Champ de pesanteur exercice I*
EXERCICE I
Chute libre avec vitesse initiale quelconque 1/ Un projectile est lancé à partir d'un point o,origine d'un repère.
Le vecteur vitesse initiale est dans le plan et fait un angle a avec , vecteur unitaire appartenant au plan horizontal de côte zéro; le champ de pesanteur est Les équations du mouvement s'écrivent:
. |
a) Déterminer l'équation de la trajectoire du mobile.
b) Calculer la flèche, c'est-à-dire l'altitude zM maximale atteinte. c) Calculer la portée, c'est-à-dire l'abscisse du point où la trajectoire recoupe l'axe (x'x) . d) Pour quelle valeur de a la portée est-elle maximale? |
2/ La « grosse Bertha », utilisée par les artilleurs allemands en 1918 pour bombarder Paris, avait une portée maximale de 120 km pour un angle de tir égal à 45°.
a) Déterminer la vitesse théorique de l'obus de masse 104 kg à la sortie du fût. b) Déterminer la flèche théorique.
c) En réalité, la vitesse à la sortie du fût était de 1 600 m.s-1 et la flèche de 19 000 m. Conclure. |
3/ Plan incliné Un mobile de masse m peut glisser sans frottements sur un plan incliné d'un angle a par rapport à l'horizontale.
Lancé avec un vecteur vitesse initiale faisant un angle b avec les horizontales du plan, il est animé d'un mouvement de translation.
a) - Effectuer le bilan des forces appliquées au solide. - Exprimer le vecteur accélération. - Quelle est la nature du mouvement?
b) Soit un repère orthonormal avec:
- parallèle aux lignes de plus grande pente et orienté vers le haut; normal au plan et orienté vers le haut; - O est la position initiale du centre d'inertie.
- Donner les équations horaires du mouvement dans ce repère. - En déduire l'équation de la trajectoire du centre d'inertie. Indiquer la nature de la trajectoire. |
c) - Choisir vox = 10 m .s - 1 et compléter le tableau ci -dessous à l'aide du logiciel:
Voz |
flèche |
portée |
tm |
(m.s-l) |
(m) |
(m) |
(s) |
10 |
|
|
|
20 |
|
|
|
30 |
|
|
|
40 |
|
|
|
50 |
|
|
|
- Quelle particularité constate-t-on, concernant la flèche de la trajectoire? Justifier- la. Mêmes questions pour la portée et pour la date tm d) - À quelle date le centre d'inertie est-il au sommet sa trajectoire ? - Quelles sont alors ses coordonnées?
réponse. |
UTILISATION DES ACQUIS
|
b) Tirs expérimentaux
Pour déterminer vo, un expérimentateur fait les deux essais suivants:
- C1 Tir vertical
Le canon du pistolet est vertical et son extrémité A située à h1 = 2,05 m du sol. L'expérimentateur tire vers le haut et constate que la fléchette tombe sur le sol 4,1s :
après son départ. Calculer vo.
- C1 Tir horizontal
Le canon est horizontal, son extrémité A est à une altitude h2 = 1,5 m d'un point 0 du sol situé sur la verticale de A . L'expérimentateur tire et constate que la fléchette tombe sur le sol horizontal en un point B
que OB = L = 10,95 m. Calculer vo.
5 / Sur un plan incliné
Sur un plan incliné d'un angle a par rapport à l'horizontale, un mobile de masse m glisse sans frottements. Le mobile est lancé avec une vitesse initiale faisant angle b avec une direction horizontale du plan incliné
On désigne par A la position initiale du centre d'inertie, dont le mouvement est repérée par une table à digitaliser.
Les coordonnées du centre d'inertie, dans le repère avec dirigé selon l'horizontale du plan et selon la ligne de plus grande pente et vers le haut, sont saisies par un ordinateur qui calcule en outre les valeurs des coordonnées du vecteur vitesse à différentes dates.
a) Exprimer l'accélération du centre d'inertie du mobile, puis les équations horaires du mouvement.
b) Déterminer l'équation de la trajectoire.
c) L’ordinateur donne:
A la date 0,1s : x= 5,64 cm, y= 3,96 cm,
Vx = 0,564 m.s-1 et Vy= 0,229 m.s-1 ;
A la date 0,3s: x = 16,92 cm, y = 18,45 cm,
vx = 0,564m.s-1 et Vy=- 0,441m.s-1.
A partir de ces données, calculer les valeurs de la vitesse initiale Vc de l'angle b et de l’angle a.
6/ Mouvement d'une luge
Une luge part sans vitesse initiale et glisse sans frottements le long d'une piste rectiligne AB de longueur 1 faisant un angle a = 20° avec le plan horizontal.
|
7/ Le joueur de tennis Dans tout l'exercice la balle de tennis sera assimilée à un point matériel, on négligera la résistance de l'air sur la balle et l’on supposera la surface de jeu parfaitement horizontale. Un joueur de tennis, situé dans la partie I du court, tente de lober son adversaire (faire passer la balle au- dessus de ce dernier). Celui-ci est situé à une distance d = 2,00 m derrière le filet, dans la partie II du court, juste en face du joueur. Le joueur frappe la balle alors que celle-ci est en 0, à la distance D= 9,00 m du filet et à la hauteur h = 0,500 m au-dessus du sol. La balle part avec une vitesse (vo= 12,0 m.s-1) inclinée d'un angle a=60° par rapport au sol, dans le plan perpendiculaire au filet (plan de Donnée: g=9,80m.s-2.
|
|