

Série D - session 2009 : problème - corrigé

1- Ensemble de définition de f

Comme $x \to x (1 - \ln x)^2$ est définie sur]0, $+\infty[$ et f est définie en 0 avec f(0) = 0, alors l'ensemble de définition de f est $[0, +\infty[$.

2- a) Continuité de f en $x_0=0$

On a
$$f(x) = x (1 - \ln x)^2 = x (\ln x)^2 \left[\frac{1}{(\ln x)^2} - \frac{2}{\ln x} + 1 \right]$$
On a
$$\lim_{x \to 0^+} x (\ln x)^2 = \lim_{x \to 0^+} 4 (\sqrt{x} \ln \sqrt{x})^2 = 0$$
puis
$$\lim_{x \to 0^+} \frac{1}{(\ln x)^2} = 0 \quad \text{et} \quad \lim_{x \to 0^+} \frac{2}{\ln x} = 0$$
alors
$$\lim_{x \to 0^+} f(x) = 0 = f(0), \quad \text{f est continue à droite de 0}$$

b) Dérivabilité de f en $x_0=0$

On a
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} (1 - \ln x)^2 = +\infty$$

f n'est pas dérivable en $x_0=0$

3- a) Dérivée de f

On a
$$f'(x) = (1 - \ln x)^2 + x(-\frac{2}{x})(1 - \ln x) = (\ln x - 1)(\ln x + 1)$$

b) sens de variation de f

$$f'(x)$$
 s'annule pour $x = \frac{1}{e}$ ou $x=e$, d'où le signe de $f'(x)$

sur $[0, \frac{1}{e}[$, f est croissante

sur
$$[\frac{1}{e}$$
, e $[$, f est décroissante

sur $[e,+\infty[$, f est croissante.

Tableau de variation de f

On a
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x (1 - \ln x)^2 = +\infty$$
puis
$$f(\frac{1}{e}) = \frac{4}{e} \quad \text{et} \quad f(e) = 0$$

$$\frac{x}{f'(x)} = \frac{1}{e} \quad e \quad +\infty$$

$$\frac{f'(x)}{f(x)} = \frac{4}{e} \quad e \quad +\infty$$

4- courbe représentative de f (unité graphique : 1 cm)

5- a) calcul de
$$I = \int_{\alpha}^{e} f(x) dx$$

On a $I = \int_{\alpha}^{e} x (1 - \ln x)^{2} dx$
On pose $u'(x) = x$ et $v(x) = (1 - \ln x)^{2}$
alors $u(x) = \frac{x^{2}}{2}$ et $v'(x) = -\frac{2}{x}(1 - \ln x)$

$$I = \left[\frac{x^2}{2}(1 - \ln x)^2\right]_{\alpha}^e + \int_{\alpha}^e x (1 - \ln x) dx$$

$$Calcul de \qquad J = \int_{\alpha}^e x (1 - \ln x) dx$$

$$On pose \qquad u'(x) = x \quad et \quad v(x) = (1 - \ln x)$$

$$alors \qquad u(x) = \frac{x^2}{2} \quad et \qquad v'(x) = -\frac{1}{x}$$

$$dans ce cas \qquad J = \left[\frac{x^2}{2}(1 - \ln x)\right]_{\alpha}^e - \int_{\alpha}^e - \frac{x}{2} dx = \left[\frac{x^2}{2}(1 - \ln x)\right]_{\alpha}^e + \left[\frac{x^2}{4}\right]_{\alpha}^e$$

$$d'où \qquad I = \left[\frac{x^2}{2}(1 - \ln x)^2\right]_{\alpha}^e + J = \left[\frac{x^2}{2}(1 - \ln x)^2 + \frac{x^2}{2}(1 - \ln x) + \frac{x^2}{4}\right]_{\alpha}^e$$

$$i.e. \qquad I = \frac{e^2}{4} - \frac{\alpha^2}{2}\left[(\ln \alpha)^2 - 3\ln \alpha + 2\right]$$

b) Calcul de l'aire $A(\alpha)$

unité d'aire: 1 cm².

$$\begin{array}{ll} \text{L'aire} & \text{A}(\alpha) = I.\,\text{cm}^2 = \left(\frac{e^2}{4} - \frac{\alpha^2}{2}\left[(\ln\alpha)^2 - 3\ln\alpha + 2\right]\right) \times \text{cm}^2 \\ \\ \text{On a} & \lim_{\alpha \to 0^+} \text{A}(\alpha) = \lim_{\alpha \to 0^+} \left[\left(\frac{e^2}{4} - \frac{\alpha^2}{2}\left[(\ln\alpha)^2 - 3\ln\alpha + 2\right]\right] \times \text{cm}^2 \\ \\ \text{D'où} & \lim_{\alpha \to 0^+} \text{A}(\alpha) = \frac{e^2}{4} \times \text{cm}^2 \end{array}$$

6- a) Existence de la réciproque g^{-1} de g.

La fonction g restriction de f sur $[e,+\infty[$ est continue strictement croissante de $[e,+\infty[$ sur $[0,+\infty[$;

g admet donc une réciproque définie sur [0,+∞[.

b) Calcul de $g(e^2)$ et de $(g^{-1})'$ (e^2)

On a
$$g(e^2) = f(e^2) = e^2$$
 (C) passe par le point $A(x_0 = e^2 ; y_0 = e^2)$
Alors $(g^{-1})'(y_0) = \frac{1}{g'(x_0)}$ i.e. $(g^{-1})'(e^2) = \frac{1}{g'(e^2)}$
Or $g'(e^2) = g'(e^2) = (\ln e^2 - 1)((\ln e^2 + 1) = 3$
D'où $(g^{-1})'(e^2) = \frac{1}{3}$

7- Les courbes (C) et (Γ) sont symétriques par rapport à la droite d'équation y = x (première bissectrice).

