

Série C - session 2007 : exercice partie A - corrigé

I - Arithmétique

1 - Montrons que 9^n - 2^n est divisible par 7 pour tout $n \in IN^*$

Posons $A_n = 9^n - 2^n$

Pour n = 1, A_1 = 9 - 2 = 7, c'est divisible par 7

Supposons que A_n soit divisible par 7

On a

$$A_{n+1} = 9^{n+1} - 2^{n+1} = 9^n.9^1 - 2^n.2^1$$

$$A_{n+1} = 9^{n}.(2+7) - 2^{n}.2^{1} = 2(9^{n}-2^{n}) + 7.9^{n}.$$

$$A_{n+1} = 2 A_n + 7.9^n$$
.

Comme A_n est divisible par 7 (hypothèse de récurrence) et 7.9ⁿ est aussi divisible par 7, $A_{n+1} = 2 A_n + 7.9^n$ est divisible par 7. alors

2- Montrons que A = 3n - 2 et B = 5n - 3 sont premiers entre eux

Rappel: soit d un diviseur commun à A et B, alors pour tous entiers x et y, d divise Ax + By

d divise 3B - 5A Donc

On a
$$3B - 5A = 3(5n - 3) - 5(3n - 2) = 1$$

D'où d divise 1, alors A = 3n - 2 et B = 5n - 3 sont premiers entre eux.

3- a) Vérifions que 5 est une solution de l'équation (E) dans Z / 7Z.

On a

$$\dot{5}^2 - \dot{5} + \dot{1} = \dot{4} - \dot{5} + \dot{1} = \dot{0}$$
, $\dot{5}$ est une solution (E).

b) Démontrer que l'équation (E) est équivalente à $(x-\dot{4})^2=\dot{1}$

On a

$$(x-4)^2 = 1$$
 ssi $x^2 - 8x + 16 = 1$

c'est-à-dire

$$x^2 - x + \dot{2} = \dot{1}$$
 ou encore $x^2 - x + \dot{1} = \dot{0}$

d'où

(E) est équivalente à
$$(x - 4)^2 = 1$$

c) Résolution de $x^2 - x + 1 = 0$ telle que |x| < 7

×	ó	i	2	3	4	5	6
$(x - \dot{4})^2$	ż	ż	4	i	Ö	i	4

Les solutions sont le entiers x = 3 + 7k ou x = 5 + 7k' (k et k' entiers)

x = 3 + 7k

pour
$$k = -1$$
, $x = -4$ et pour $k = 0$, $x = 3$

x = 5 + 7k

pour
$$k = -1$$
, $x = -2$ et pour $k = 0$, $x = 5$

d'où l'ensemble $S = \{-4; -2; 3; 5\}$