GEOMETRIE : Géométrie plane

Table des matières

Première partie : Geometrie plane
Chapitre 1 Transformations du plan
I. Définition
II. Types de transformation géometrique
1. Translation
a) Définition
b) Expression analytique d'une translation Définition4
2. Rotation4
3. Homothétie5
a) Définition5
b) Propriétés6
c) Expression analytique d'une homothétie
4. La Symétrie centrale
a) Définition8
b) La symétrie centrale conserve ;9
c) L'alignement9
d) Le contact9
e) Le barycentre de deux points ou plus9
f) La composée de deux symétries centrales9
g) Expression analytique d'une symétrie centrale
Chapitre II : Similitudes planes
I. Generalites
5. Définition d'une similitude
6. Définition d'une isométrie

	7.	-	Propriétés	11
	8.	(Composition	12
II.	S	Sin	militudes	12
	1.	-	Ecritures complexes	12
	ł	h)	Similitude	12
	i	i)	Isométrie	12
	2.		Propriétés géométriques	12
	г	a)	Conservation de la forme géométrique	12
	t	b)	Conservation de propriétés géométriques	13
	C	c)	Aires	13
	3.		Décomposition	13
	4.		Similitude fixant deux points distincts	13
III.	5	Sin	militude directe ou indirecte	13
	1.	-	Définitions	13
	2.	-	Récapitulatif des écritures complexes	15
	3	••••		15
	4	••••		15
	5			15

Première partie : Geometrie plane

Chapitre 1 Transformations du plan

I. Définition

Les transformations géométriques planes sont des applications du plan $\mathcal P$ dans luimême.

Les transformations qui seront objet d'étude sont ; la translation, l'homothétie, la symétrie centrale, la symétrie axiale et la rotation.

II. Types de transformation géometrique

1. Translation

a) Définition

On appelle translation de vecteur \vec{u} et on note $t_{\vec{u}}$ la transformation du plan P qui à tout point M fait correspondre le point M' tel que $\overrightarrow{MM'} = \vec{u}$

$$\begin{cases} t_{\vec{u}} : P \to P \\ M \to M' \end{cases} \text{ tel que } \overrightarrow{MM'} = \vec{u}$$

Exemple:

Déterminer les coordonnées des points A', B', C' images respectives de A,B,C et par la translation de vecteur $\vec{u}\binom{2}{-9}$

Solution:

$$t_{\vec{u}}(A) = A' \Leftrightarrow \overrightarrow{AA'} = \vec{u} \Leftrightarrow \overrightarrow{AA'} \begin{pmatrix} x_{a'} - x_a \\ y_{a'} - y_a \end{pmatrix} = \vec{u} \begin{pmatrix} 2 \\ -9 \end{pmatrix}$$

$$\Rightarrow \overrightarrow{AA'} \begin{pmatrix} x_{a'} - 7 \\ y_{a'} - 5 \end{pmatrix} = \vec{u} \begin{pmatrix} 2 \\ -9 \end{pmatrix}$$

$$\Rightarrow \begin{cases} x_{a'} - 7 = 2 \\ y_{a'} - 5 = -9 \end{cases} \Rightarrow \begin{cases} x_{a'} = 2 + 7 = 9 \\ y_{a'} = -9 + 5 = -4 \end{cases}$$

Donc: A' (9; -4)

$$t_{\vec{u}}$$
 (B)= B' $\Leftrightarrow \overrightarrow{BB'} = \vec{u} \Leftrightarrow BB' \begin{pmatrix} x_{b'} - x_b \\ y_{b'} - y_b \end{pmatrix} = \vec{u} \begin{pmatrix} 2 \\ -9 \end{pmatrix}$

$$\Rightarrow \overrightarrow{BB'} \begin{pmatrix} x_b + 4 \\ y_b - 1 \end{pmatrix} = \overrightarrow{u} \begin{pmatrix} 2 \\ -9 \end{pmatrix}$$

$$\Rightarrow \begin{cases} x_{b'} + 4 = 2 \\ y_{b'} - 1 = -9 \end{cases} \Rightarrow \begin{cases} x_{b'} = 2 - 4 = -2 \\ y_{b'} = -9 + 1 = -8 \end{cases}$$

Donc: B'(-2;-8)

$$t_{\vec{u}}$$
 (C)= C' \Leftrightarrow $\overrightarrow{CC'}$ = \vec{u} \Leftrightarrow CC' $\begin{pmatrix} x_c'-x_c \\ y_{c'}-y_c \end{pmatrix}$ = $\vec{u}\begin{pmatrix} 2 \\ -9 \end{pmatrix}$

$$\Rightarrow \overrightarrow{CC'} \begin{pmatrix} x_{c'} + 3 \\ y_{c'} + 6 \end{pmatrix} = \overrightarrow{u} \begin{pmatrix} 2 \\ -9 \end{pmatrix}$$

$$\Rightarrow \begin{cases} x_{b'} + 3 = 2 \\ y_{b'} + 6 = -9 \end{cases} \Rightarrow \begin{cases} x_{c'} = 2 - 3 = -1 \\ y_{c'} = -9 - 6 = -15 \end{cases}$$

b) Expression analytique d'une translation Définition

Dans le plan \mathcal{P} muni d'un repère $(0, \vec{\imath}, \vec{\jmath})$ soit $\vec{u}\binom{a}{b}$. Soit les points M(x,y) et M'(x',y') tels que ;

$$t_{\vec{u}}(M)=M'$$
.

Il en résulte que : $MM'=\vec{u}$

$$MM'\binom{x_{M'}-x_M}{y_{M'}-y_M} = \vec{u}\binom{a}{b} \Longrightarrow \begin{cases} x'-x = a \\ y'-x = b \end{cases}$$

 $\begin{cases} x' = x + a \\ y' = y + b \end{cases}$ est appelée expression analytique de la translation de vecteur $\vec{u}\binom{a}{b}$.

2. Rotation

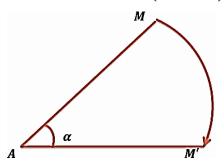
Dans le plan \mathcal{P} , Soit un point A fixé et soit α un réel donné.

On appelle une rotation de centre A et d'angle α et on la note $R_{(A,\alpha)}$, la transformation dans le plan \mathcal{P} qui laisse le point A invariant, et qui à tout point M distinct de A associe le point M' tel que ;

$$AM' = AM \text{ et } \left(\overrightarrow{AM}, \overrightarrow{AM'}\right) = \alpha$$

On écrit;

$$R_{(A,lpha)}(A) = A \ et$$
 $R_{(A,lpha)}(M) = M' \Longleftrightarrow egin{cases} AM = AM' \ (\overrightarrow{AM}, \overrightarrow{AM'}) = lpha \end{cases}$



Exemple

Soit ABC un triangle non aplati. Construire l'image de ABC par R $(B, \frac{\pi}{2})$.

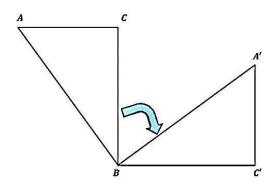
Solution

$$R_{\left(B,-\frac{\pi}{2}\right)}(B)=B$$
;

$$R_{\left(B,-\frac{\pi}{2}\right)}(A)=A'\Longrightarrow\left\{\begin{matrix}BA=BA'\\\left(\overrightarrow{BA},\overrightarrow{BA'}\right)=-\frac{\pi}{2}\end{matrix}\right\};$$

$$R_{\left(B,-\frac{\pi}{2}\right)}(C)=C'\Longrightarrow \left\{\begin{matrix} CA=CA'\\ \left(\overrightarrow{CA},\overrightarrow{CA'}\right)=-\frac{\pi}{2} \end{matrix}\right\};$$

$$R_{\left(B,-\frac{\pi}{2}\right)}(ABC) = A'BC' \ (figure).$$



3. Homothétie

a) Définition

Soit k un nombre réel non nul et distinct de $1 (k \in \mathbb{R}^* \setminus \{1\})$, et Ω un point fixé du plan \mathcal{P} .

On appelle homothétie de centre Ω et de rapport k que l'on note $h(\Omega,k)$, la transformation dans le plan P qui laisse le point Ω invariant, et qui à tout point M associe l'unique point M' tel que $\overrightarrow{\Omega M'}=k$. $\overrightarrow{\Omega M}$

On note :
$$h(\Omega,k)(M) = M' \Leftrightarrow \overrightarrow{\Omega M'} = k. \overrightarrow{\Omega M}$$

Exemple:

Soit ABC est un triangle non aplati et h l'homothétie de centre A et de rapport k=2. Construire l'image de ABC par $h_{(A,2)}$.

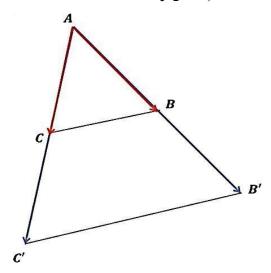
Solution

$$h_{(A,2)}(A) = A$$
 A (est le centre de h)

$$h_{(A,2)}(B) = B' \Longrightarrow \overrightarrow{AB'} = 2\overrightarrow{AB}.$$

$$h_{(A,2)}(C) = C' \Longrightarrow \overrightarrow{AC'} = 2\overrightarrow{AC}$$

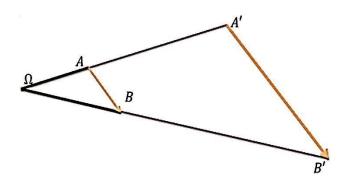
$$h_{(A,2)}(ABC) = AB'C'$$
 (figure).



b) Propriétés

 $\mathbf{1}^{\circ}$ / Le centre Ω d'une homothétie, un point M et son imageM', sont alignés.

$$2^{\circ} / \operatorname{Si} \left\{ \begin{matrix} h_{(\Omega,k)}(A) = A' \\ h_{(\Omega,k)}(B) = B' \end{matrix} \right. \Longrightarrow \overrightarrow{A'B'} = k. \overrightarrow{AB}$$



c) Expression analytique d'une homothétie

Dans le plan \mathcal{P} muni d'un repère $(0; \vec{\cdot}, \vec{\cdot})$, soit l'homothétie h de centre $\Omega(x_0, y_0)$ et de rapport le réel k et notée $h(\Omega, k)$. Soit M(x, y) un point quelconque du plan \mathcal{P} , et M'(x', y') son image par l'homothétie h.

On a;
$$h_{(\Omega,k)}(M) = M' \Leftrightarrow \overline{\Omega M'} = k.\overline{\Omega M},$$

$$\Rightarrow \overline{\Omega M'} \begin{pmatrix} x' - x_0 \\ y' - y_0 \end{pmatrix} = k.\overline{\Omega M} \begin{pmatrix} kx - kx_0 \\ ky - ky_0 \end{pmatrix},$$

$$\Rightarrow \begin{cases} x' - x_0 = kx - kx_0 \\ y' - y_0 = ky - ky_0 \end{cases} \Rightarrow \begin{cases} x' = x_0 + kx - kx_0 \\ y' = y_0 + ky - ky_0, \end{cases}$$

$$\Rightarrow \begin{cases} x' = kx + (1 - k)x_0 \\ y' = ky + (1 - k)y_0 \end{cases}.$$

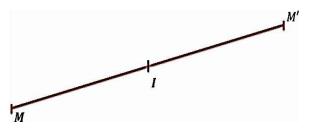
Cette écriture est l'expression analytique de l'homothétie de centre $\Omega(x_0, y_0)$ et de rapport le réel k, dans le plan \mathcal{P} muni d'un repère $(0; \vec{\cdot}, \vec{\cdot})$.

4. La Symétrie centrale

a) Définition

Dans le plan \mathcal{P} , Soit I un point fixé, on appelle symétrie centrale de centre I et on note S_I , la transformation dans le plan \mathcal{P} qui laisse le point I invariant, et qui à tout point M associe l'unique point M' tel que I soit le milieu de [MM'].

$$S_{I}(M) = M' \iff I = M * M' \iff \begin{cases} S_{I}(M) = M' \\ et \\ S_{I}(I) = I \end{cases}$$



Exemple:

Soit ABC un triangle quelconque.

- **1°/** Construire l'image de *ABC* par la symétrie S_A .
- **2°/** Quelle est la nature du quadrilatère BCB'C'? Prouvez-le.

Solution

$$\mathbf{1}^{\circ}/S_A(A) = A; \quad S_A(B) = B'; \quad S_A(C) = C'.$$

$$S_A(ABC) = AB'C'.$$

2°/A étant le milieu [BB'] et de [CC'], les deux diagonales de BCB'C' on le même milieu A, donc BCB'C' est un parallélogramme.

Remarque

La symétrie centrale de centre Ω est une homothétie de centre Ω et de rapport -1 $S_{\Omega} = h_{(\Omega,-1)}$

b) La symétrie centrale conserve;

La distance : (la symétrie centrale est une isométrie)

$$S_I(M,N) \longrightarrow (M',N') \Longrightarrow \overrightarrow{M'N'} = \overrightarrow{MN}$$
.

Le parallélisme :

$$(\Delta_1) // (\Delta_2)$$
 et $S_i: (\Delta_1, \Delta_2) \rightarrow (\Delta'_1, \Delta'_2) \Rightarrow (\Delta'_1) // (\Delta'_2)$

L'orthogonalité:

$$(\Delta_1) \perp (\Delta_2) \ et \ S_I: (\Delta_1, \Delta_2) \rightarrow (\Delta'_1, \Delta'_2) \Longrightarrow (\Delta'_1) \perp (\Delta'_2)$$

c) L'alignement

A, B et C trois points alignés, $\Rightarrow S_I(A)$, $S_I(B)$ et $S_I(C)$ sont alignés.

d) Le contact

$$F = E \cap G \Longrightarrow S_I(F) = S_I(E) \cap S_I(G)$$

e) Le barycentre de deux points ou plus

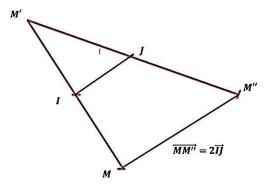
A	В	С
α	β	γ

$S_I(A)$	$S_I(B)$	$S_I(C)$
α	β	γ

f) <u>La composée de deux symétries centrales</u>

$$M: S_I \longrightarrow M': S_J \longrightarrow M''$$

$$\Longrightarrow M \longrightarrow S_I \circ S_I \longrightarrow M^{\prime\prime}$$



$$S_{I}(M) = M' \Longrightarrow \overrightarrow{MM'} = 2\overrightarrow{IM'},$$

$$S_{J}(M') = M'' \Longrightarrow M'M'' = 2M'J = 2(\overrightarrow{IM'} + \overrightarrow{M'J}) = 2\overrightarrow{IJ}.$$

$$\Longrightarrow \overrightarrow{MM''} = \overrightarrow{MM'} + \overrightarrow{M'M''} = 2\overrightarrow{IM''} + 2\overrightarrow{M'J} = 2\overrightarrow{IJ}.$$

$$Donc; S_{J} \circ S_{I} = t_{2\overrightarrow{IJ}}.$$

Exemple:

ABCD est un parallélogramme.

Caractériser $S_A \circ S_B \circ S_C \circ S_D$.

Solution

$$S_{A} \circ S_{B} \circ S_{C} \circ S_{D} = t_{2\overline{BA}} \circ t_{2\overline{D}C} \quad \neg = t_{2(\overline{BA} + \overline{DC})} = t_{\vec{0}}.$$

$$\Rightarrow S_{A} \circ S_{B} \circ S_{C} \circ S_{D} = Id_{\mathcal{P}}$$

g) Expression analytique d'une symétrie centrale

Dans le plan \mathcal{P} muni d'un repère orthonormé $(0; \vec{\cdot}, \vec{\cdot})$, soit le point $I(x_l, y_l)$.

Un point M(x, y) du plan a pour image un point M'(x', y') par la symétrie S_{I} , signifie que ;

$$S_{\mathrm{I}}(M) = M' \Longrightarrow \mathrm{I} = M * M';$$

$$\Rightarrow \begin{cases} x_{\mathbf{I}} = \frac{x' + x}{2} \\ y_{\mathbf{I}} = \frac{y' + y}{2} \end{cases} \Rightarrow \begin{cases} x' = 2x_{\mathbf{I}} - x \\ y' = 2y_{\mathbf{I}} - y \end{cases}$$

Cette écriture est l'expression analytique de la symétrie centrale de centre I.

Chapitre II : Similitudes planes

I. Generalites

5. <u>Définition d'une similitude</u>

Une similitude de rapport k (k réel, k > 0) est une transformation du plan qui multiplie les distances par k. C'est une transformation du plan qui conserve les rapports de distances.

Pour tous points A et B d'images A' et B', on a $\frac{A'B'}{AB} = k$.

Exemple : Une homothétie de rapport k est une similitude de rapport k si k est positif, et de rapport

- k si k est négatif.

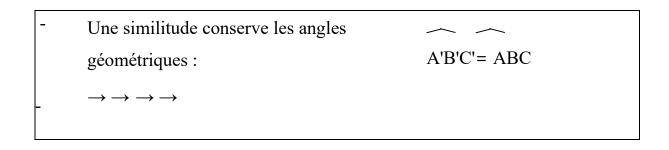
6. <u>Définition d'une isométrie</u>

Une isométrie est une similitude de rapport 1. C'est donc une transformation qui conserve les distances.

<u>Exemples</u>: Les rotations, les translations, les réflexions sont des isométries car ce sont des transformations qui conservent les distances.

7. Propriétés

Soit s'une similitude de rapport k' et soient A', B' et C' les images de A, B et C par s. Nous avons les propriétés suivantes :



Pour le produit scalaire : A'B'. A'C' = k

 $AB. AC^2$

8. Composition

La réciproque d'une similitude de rapport k est une similitude de rapport $\frac{1}{k}$.

La composée de deux similitudes de rapports k et m est une similitude de rapport k × m

La composition de deux similitudes n'est pas commutative en général.

Soit s_1 et s_2 deux similitudes. La composée s_1 o s_2 n'est en général pas égale à la composée s_2 o s_1 .

II. Similitudes

1. <u>Ecritures complexes</u>

h) Similitude

Les similitudes du plan sont les transformations d'écriture complexe : z' = az + b ou z' = az + b (avec a et b des complexes fixés, et a non nul). Le rapport de la similitude est le module de a.

i) <u>Isométrie</u>

Les isométries du plan sont les transformations d'écriture complexe : $z'=e^{i\theta}\,z+b\ \ ou\ \ z'=e^{i\theta}\,z+b\ \ (\ avec\ b\ un\ nombre\ complexe,\ \theta\ un\ réel\).$

2. Propriétés géométriques

a) Conservation de la forme géométrique

Une similitude transforme un segment en segment, une droite en une droite, un cercle en un cercle.

Une similitude de rapport k transforme le cercle de centre O de rayon R en un cercle de centre O' (image de O par la similitude) de rayon kR.

b) Conservation de propriétés géométriques

Une similitude conserve l'orthogonalité, le parallélisme, le contact et le barycentre.

c) Aires

Une similitude de rapport k multiplie les aires par k².

3. <u>Décomposition</u>

Une similitude peut s'écrire comme la composée de translations, de rotations, de réflexions et d'homothéties.

4. Similitude fixant deux points distincts

Une similitude s ayant deux points fixes A et B distincts (c'est à dire telle que s(A) = A et s(B) = B) est soit l'**identité**, soit la **réflexion d'axe (AB)**.

III. Similitude directe ou indirecte

1. <u>Définitions</u>

a) Similitude directe

Les similitudes d'écriture $\mathbf{z'} = \mathbf{az} + \mathbf{b}$ (avec a et b des complexes fixés, a non nul) conservent les angles orientés et sont appelées similitudes directes.

Si a = 1 alors ce sont des isométries que l'on nomme **déplacements.**

Les translations et les rotations sont les seuls déplacements.

b) Similitude indirecte

Les similitudes d'écriture z' = az + b (avec a et b des complexes fixés, a non nul) changent les angles orientés en leur opposé et sont appelées similitudes indirectes. Si a = 1 alors ce sont des isométries que l'on nomme anti-déplacements.

Les réflexions sont des anti-déplacements, mais ce ne sont pas les seuls.

c) Caractérisation géométrique des similitudes directes

Soient Ω un point du plan, θ et k deux réels, k>0, $a\neq 1$. On appelle **similitude directe de centre** Ω , **d'angle** θ **et de rapport** k, l'application du plan dans lui-même qui fixe le point Ω et qui à chaque point M distinct de Ω associe le point M' défini par :

$$\rightarrow$$
 \rightarrow $(\Omega M, \Omega M') = \theta [2\pi] \text{ et } \Omega M' = k\Omega M.$

Exemple: Soit S la similitude directe de centre C, d'angle

A de

rapport $\frac{1}{2}$. Soit ABC un triangle équilatéral, soit I le milieu

$$\frac{\pi}{3}$$

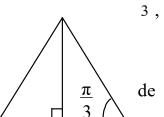
$$\frac{1}{2}$$

[BC]. On a : (CA,CI) = $[2\pi]$ et CI = CA.

Donc, I est l'image de A par S . B C

I

La similitude directe de centre Ω , d'angle θ et de rapport k (k>0) est la composée de l'homothétie de centre Ω , de rapport k et de la rotation de même centre et d'angle θ .



Réciproquement, la composée de l'homothétie de centre Ω , de rapport k (k réel quelconque) et de la rotation de même centre et d'angle θ est la similitude directe de centre Ω , de rapport k et d'angle θ si k > 0, ou de rapport -k et d'angle $\theta + \pi$ si k < 0.

2. Propriété

Étant donnés quatre point A, B, A', B' tels que A soit distinct de B et A' soit distinct de B'.

Il existe une unique similitude directe transformant A en A' et B en B'.

3. Forme réduite d'une similitude directe

Soit S la similitude directe d'écriture complexe z' = az + b, où a et b sont des nombres complexes, a non nul :

- Si a = 1, alors S est une translation de vecteur d'affixe b.
- Si a \neq 1, alors S est la composée de l'homothétie de centre Ω de rapport k=|a|, et de la rotation de même centre Ω d'angle $\theta={\rm Arg}(a)$ [2π] . Ω est le point dont l'affixe est solution de l'équation z=az+b (seul point fixe de S).

L'écriture complexe de la similitude directe de centre Ω , d'angle θ et de rapport k (k > 0) est : z'- $w = ke^{i\theta}(z - w)$ où w est l'affixe du point Ω .

Cette écriture s'appelle la **forme réduite de S**, composée d'une rotation et d'une homothétie.

4. Récapitulatif des écritures complexes

Transformation	Ecriture complexe	
\rightarrow	z' = z + b u d'affixe b	
Translation de vecteur u		

Homothétie de centreΩ , de rapport k	$z' - w = k(z - w)$ Ω d'affixe w
Rotation de centre Ω , d'angle θ	$z' - w = e^{i\theta}(z - w)$ Ω d'affixe w
Similitude directe de centre Ω ,	
d'angle θ , de rapport k ($k > 0$)	$z' - w = ke^{i\theta}(z - w)$ Ω d'affixe w
(composée d'une homothétie et d'une	Z W KC (Z W) 12 d diliAC W
rotation)	

Soit S une transformation s'écrivant sous la forme complexe : $\mathbf{z'} = \mathbf{az} + \mathbf{b}$ (avec a et b des complexes fixés, a non nul) :

- Si a est un réel avec a = 1: S est la translation de vecteur d'affixe b.
- Si a est un réel avec a $\neq 1$: S est l'homothétie de centre Ω d'affixe w (telle que w = aw + b) de rapport a.
- Si a est un complexe non réel avec $a \models 1 : S$ est la rotation de centre Ω d'affixe w (telle que w = aw + b) d'angle $\theta = Arg(a) [2\pi]$.
- Si a est un complexe non réel avec a $\neq 1$: S est la similitude directe de centre Ω d'affixe w (telle que w = aw + b) d'angle $\theta = Arg(a)$ [2π] et de rapport k = a.