

1/3

Couple acido-basique

C'est quoi un couple acide-base?

En 1923, Joannes Brönsted, chimiste danois (1879-1947), publie une théorie sur les acides et les bases basée sur le transfert de protons.

a)Définitions

Un acide selon Brönsted est une espèce chimique capable de céder un proton H⁺.

Une base selon Brönsted est une espèce chimique capable de capter un proton H⁺.

Quand un acide cède un proton, il se transforme en sa base conjuguée.

Quand une base capte un proton, elle se transforme en son acide conjugué.

Les deux forment un couple acide-base.

b)Écriture

Un couple acide-base s'écrit de la façon suivante : ACIDE / BASE avec l'acide toujours à gauche et la base toujours à droite.

Exemples

- L'acide éthanoïque CH3COOH peut céder un proton H⁺ et se transformer en CH3COO⁻, l'ion éthanoate, qui est sa base conjuguée.

Le couple s'écrit CH3COOH/CH3COO-.

- L'ammoniac NH₃ qui est une base peut capter un proton H⁺ et se transformer en NH4⁺, l'ion ammonium, qui est son acide conjugué.

Le couple s'écrit NH₄⁺/NH₃.

c)Pourquoi un proton s'écrit-il H⁺ ?

Un noyau d'hydrogène $\frac{1}{1}H$ est composé d'un proton et de zéro neutron.

Un atome d'hydrogène H est donc composé d'un proton et d'un électron.

Un ion hydrogène H⁺, qui a perdu un électron, ne sera donc plus composé que d'un proton d'où l'écriture H⁺ pour un proton.

Les ions H⁺ ne peuvent exister seuls en solution aqueuse : on ne les trouve donc que combinés à des molécules d'eau, sous forme d'ions oxonium H3O⁺ .

H⁺ équivalent à H₃O⁺

Réaction acido-basique

Une réaction acido-basique met en jeu deux couples acide-base: le couple Acide₁ / Base₁ et le couple Acide₂ / Base₂.

Une réaction acide-base est une transformation chimique entre l'acide d'un couple et la base d'un autre couple acide/base, par l'intermédiaire d'un échange d'ions H⁺. Pour équilibrer l'équation de

la réaction qui a lieu entre les deux couples, on établit les demi-équations associées à chaque espèce chimique, puis on les additionne de façon à ne plus avoir de proton H⁺ (c'est-à-dire obtenir autant d'ions du côté des réactifs et des produits).

L'équation complète est donc une combinaison linéaire des deux demi-équations spécifiques de chaque couple:

- Acide₁ = Base₁ + n H⁺
- Base₂ + n H⁺ = Acide₂
- Acide₁ + Base₂ = Base₁ + Acide₂ (cette équation est dite une «équation-bilan».)

Exemple:

On met en présence une solution acide de chlorure d'ammonium $(NH_4^+_{(aq)}, Cl^-_{(aq)})$ et une solution basique de soude $(Na^+_{(aq)}, HO^-_{(aq)})$. On observe alors un dégagement gazeux d'ammoniac NH_3 . Les ions $Na^+_{(aq)}$ et $Cl^-_{(aq)}$ ne participent pas à la réaction: ce sont des ions spectateurs. Il y a donc eu un transfert de proton de l'acide NH_4^+ vers la base HO^- .

On écrit alors:

$$NH_4^+ = NH_3 + H^+$$

 $HO^- + H^+ = H_2O$

On a donc $NH_4^+_{(aq)} + HO^-_{(aq)} \Rightarrow NH_{3(g)} + H_2O_{(I)}$. C'est l'équation-bilan de la réaction acidobasique. La position de l'équilibre est dépendante des valeurs de p K_a des couples concernés. Dans le cas présent, p $K_a(H_2O/HO^-) > pK_a(NH_4^+/NH_3)$ donc la réaction est déplacée vers la droite (NH_3 est une base faible).

Quelques couples acide-base:

Tous les couples acide-base s'écrivent sous la forme acide/base.

Couple acide-base	Acide	Base
lon hydronium/eau	H ₃ O⁺	H₂O
Eau/ion hydroxyde	H₂O	OH ⁻
Dioxyde de carbone/ion hydrogénocarbonate	CO ₂ ,H ₂ O	HCO ₃ -
lon hydrogénocarbonate/ion carbonate	HCO ₃ -	CO ₃ ²⁻
Acide sulfurique/ion hydrogénosulfate	H ₂ SO ₄	HSO ₄ -
lon hydrogénosulfate/ion sulfate	HSO₄ ⁻	SO ₄ ²⁻

http://www.accesmad.org

lon ammonium/ammoniac	NH ₄ ⁺	NH ₃
Acide nitrique/ion nitrate	HNO ₃	NO ₃ -
Acide acétique/ion acétate	CH₃COOH	CH3COO-

Date de version :21/07/2023Auteur : Équipe Physique3/3