

CALCUL DANS IR Séquence 2 : Exercices

Exercice 1

Comparer les nombres suivants :

1)
$$\frac{16}{7}$$
 et 2;

1)
$$\frac{16}{7}$$
 et 2; 2) $\frac{703}{4}$ et $\frac{1933}{11}$; 3) $\frac{159}{32}$ et $\frac{472}{95}$

3)
$$\frac{159}{32}$$
 et $\frac{472}{95}$

4)
$$\frac{2\pi}{3}$$
 et $\frac{3\pi}{5}$

4)
$$\frac{2\pi}{3}$$
 et $\frac{3\pi}{5}$; 5) $\sqrt{18}$ et 4 + $\sqrt{2}$

Exercice 2

Ranger dans l'ordre croissant les nombres suivants :

1)
$$\frac{-9}{2}$$
; $\frac{13}{4}$; -4 et $\frac{7}{2}$

2) 2;
$$\frac{-6}{7}$$
; $\frac{1}{7}$; 1; -2; $\frac{13}{7}$

Exercice 3

Déterminer les intervalles correspondant aux réels :

- 1) supérieurs ou égaux à 4.
- 2) compris strictement entre 4 et 8
- 3) supérieurs à 6
- 4) négatifs ou nuls, ou supérieurs ou égaux à trois

Exercice 4

Écrire les conditions suivantes à l'aide d'intervalles :

2)
$$x \le 2$$
;

3)
$$-1 \le x \le 10$$
;

4)
$$x \ge -2$$
;

5)
$$5 \ge x \ge -3$$

Exercice 5

Écrire les conditions suivantes à l'aide d'inégalités :

1)
$$x \in [-2;5]$$

2)
$$x \in]1;4[$$

3)
$$x \in]-\infty;2[$$

1)
$$x \in [-2;5[$$
 2) $x \in]1;4]$ 3) $x \in]-\infty;2[$ 4) $x \in]-1;0[\cap]-3;4]$ 5) $x \in]-\infty;3] \cup]5;7]$

$$5)x \in]-\infty;3] \cup]5;7]$$

Exercice 6

Déterminer les ensembles suivants :

$$A = [0; 2] \cap [1; 5];$$

B =] -
$$\infty$$
 ; 3] \cap] -1 ; 2 [

$$C =]-2;3 \} U [-5:7]$$
 $D =]-4;3] U [5;+ $\infty[$$

Exercice 7

Compléter le tableau suivant :

I	J	I∩J	IUJ
[5 ; 19]] - ∞ ; 0[
]-∞;-2]] -2 ; 3]		
]-∞;1]	[3;5[

Exercice 8

Résoudre dans IR les inéquations :

1)
$$2x + 4 > 0$$
;

2)
$$-x + 3 \le 0$$

3)
$$2x \le 0$$

4) -
$$2x - 5 \ge x + 4$$

2)
$$-x + 3 \le 0$$
; 3) $2x \le 0$; 4) $-2x - 5 \ge x + 4$; 5) $-x + 2 < -(x + 4) + 2$

Exercice 9

Compléter les phrases :

1)
$$|x + 3| = d(x : ...) = x + 3 \text{ si } x \ge$$

1)
$$|x + 3| = d(x; ...) = x + 3 \text{ si } x \ge;$$
 2) $|x + 3| = d(x; ...) = \text{ si } x \le$

3)
$$|x - 1| = d(x; ...) =$$
 si $x \ge;$

4)
$$|x - 1| = d(x : ...) =$$
 si $x \le$

Exercice 10

Reproduire et compléter le tableau :

Équation	Distance	Représentation graphique	Solution
x = 3			
x - 4 = 1			
x + 2 = 5			
x - 3 = -1			
-x + 1 = 4			

Exercice 11

- 1) Développer $(x + y)^2$ et $(|x| + |y|)^2$
- 2) En remarquant que $|x + y|^2 = (x + y)^2$, comparer $|x + y|^2$ et $(|x| + |y|)^2$
- 3) En déduire que $|x + y| \le |x| + |y|$