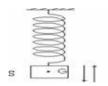


Exercices sur pendule élastique

1^{er} Exercice : Pendule élastique vertical:

On considère un pendule élastique vertical constitué d'un ressort de constante de raideur k=20N/m et d'un corps solide de masse m=200g .

On écarte le corps S verticalement vers le bas à partir de sa position d'équilibre d'une distance égale à 3cm et on le lâche sans vitesse initiale.



A l'instant t=0 le corps passe de la position d'équilibre stable ${\sf G}_{\sf o}$ dans le sens positif.

- 1) Déterminer l'allongement du ressort à l'équilibre Δl_{o}
- 2) Déterminer l'équation différentielle du mouvement.
- 3) Donner l'équation horaire du mouvement.
- 4) Déterminer la période propre du mouvement. On donne g=10N/kg.

Correction

1) Le système étudié :{le corps S à l'équilibre}

Bilan des forces: à l'équilibre le corps S est soumis à l'action des forces suivantes :

 \vec{P} : son poids.

 \overrightarrow{T}_0 : la tension du ressort à l'équilibre.

D'après la condition d'équilibre du corps S on a donc: T_o =P = m.g $\rightarrow K\Delta l_o$ = m.g

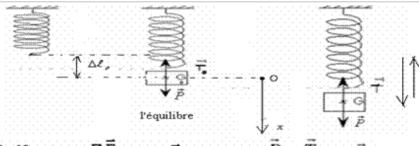
$$\Delta l_0 = \frac{mg}{K} = \frac{0.2 \times 10}{20} = 0.1 m = 10 cm$$

- 2) <u>-Le système étudié</u> :{le corps S } lorsqu'il effectue des oscillations.
- Bilan des forces: pendant son mouvement le corps S est soumis à l'action des forces suivantes :

 \vec{P} : son poids.

 $ec{T}$: la tension du ressort .

On considère un repère (O, $\stackrel{\cdot}{i}$) , son origine O est confondu avec le centre d'inertie G_0 du corps S à l'équilibre



-Application de la deuxième loi de Newton: $\Sigma \vec{F}_{ext} = m.\vec{a}_G \implies \vec{P} + \vec{T} = m.\vec{a}_G$

Par projection sur l'axe ox on a: m.g - $K.\Delta l_o$ - K.x = $m.a_o$ donc :

$$m.g$$
 - $K.(\Delta l_o + x) = m.a_G \rightarrow P - T = m.a_o$

Or d'après la condition d'équilibre : $m.g = K.\Delta l_o \rightarrow m.g - K.\Delta l_o = 0$

donc: -K.x = m.a

d'où: m
$$\ddot{x}$$
 +K x = 0 \rightarrow \ddot{x} + $\frac{K}{m}x=0$

C'est l'équation différentielle du mouvement.

3) La solution de l'équation différentielle : $\ddot{x} + \frac{K}{m}x = 0$ est: $x = x_m .\cos(\omega_0 t + \phi)$

D'après les données on a :

$$\omega_o = \sqrt{\frac{m}{\kappa}} = \sqrt{\frac{0.2}{20}} = 10 \text{ rad/s} \text{ et } x_m = 3 \text{ cm}$$

Et d'après les conditions initiales : à t=0 , x=0 donc :

à t=0;
$$\phi$$
= ± $\frac{\pi}{2}$ \rightarrow $\cos \phi$ = 0 \rightarrow 0 = x_m . $\cos \phi$

le corps passe de la position d'équilibre stable G_o dans le sens positif v>0 à t=0.

Et on a:
$$x = x_m . \cos(\omega_o . t + \phi) \rightarrow v = \dot{x} = -x_m \omega_o . \sin(\omega_o . t + \phi)$$

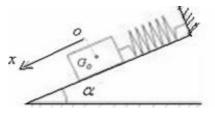
donc à t=0 : $v = -x_m \cdot \omega \circ .\sin \varphi > 0 \rightarrow \sin \varphi < 0$ donc $\varphi < 0$ d'où: $\varphi = -\frac{\pi}{2}$

L'équation horaire du mouvement est : $x = 3.10^{-2}.\cos(10.t - \frac{\pi}{2})$

4) La période propre du mouvement. : $T_o = 2 \pi$. $\sqrt{\frac{m}{K}} = 2 \pi$. $\sqrt{\frac{0.2}{20}} \approx 0.628 \text{ s}$

2ème Exercice : Pendule élastique incliné:-

Un pendule élastique est placé sur un plan incliné d'un angle a = 30° par rapport au plan horizontal .Le pendule élastique est constitué d'un ressort maintenue par un support fixe à l'une de ses extrémités alors que l'autre extrémité est liée à un corps solide de masse de masse m=200g . (voir schéma).



Sachant que l'allongement du ressort à l'équilibre est : $Dl_o = 8cm$

- 1)Déterminer l'allongement de ressort à l'équilibre .
- 2) On écarte le corps de sa position d'équilibre de 2cm selon la ligne de la grande pente vers le bas et on le lâche sans vitesse initiale.
- a- Déterminer l'équation différentielle du mouvement.

b-Sachant que le corps passe à t=0 du point d'abscisse x=+1cm dans le sens positif.

Déterminer l'équation horaire du mouvement. On donne : g=10N/kg

Réponse:

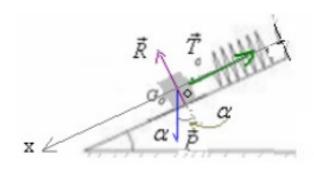
1) Système étudié {le corps solide à l'équilibre}

Bilan des forces:

 \vec{P} : poids du cavalier.

 \vec{R} : réaction du plan de contact elle est perpendiculaire au plan de contact car les frottements sont négligeables..

 \overrightarrow{T}_0 : Tension du ressort à l'équilibre



Condition d'équilibre: $\vec{P} + \vec{R} + \vec{T}_0 = \vec{0}$

Par projection sur l'axe ox: $P.\sin a - T_0 + 0 = 0 \rightarrow m.g.\sin a - k.\Delta l_0 = 0$

donc:
$$\Delta l_o = \frac{m.g.\sin\alpha}{k}$$

AN:
$$\Delta l_o = \frac{0.2.\sin 30 \times 10}{20} = 0.05 \, m = 5 \, cm$$

2) Système étudié {le corps solide}

Bilan des forces:

 \vec{P} : poids du cavalier.

 \vec{R} : réaction du plan de contact elle est perpendiculaire au plan de contact car les frottements sont négligeables..

 \vec{T} : Tension du ressort lors du mouvement

En appliquant la deuxième loi de Newton: $\vec{P} + \vec{R} + \vec{T} = \text{m.} \ \vec{a_G}$

Par projection sur l'axe ox: P-T + 0 = m . $a_x \rightarrow m.g$ - $k(\Delta I_0 + x) = m.a_x \rightarrow m.g$ - $k\Delta I_0$ - kx = m.

et d'après la condition d'équilibre, on a: m.g.sin α - $k\Delta I_0$ = 0 donc: - k.x = m. \ddot{x}

d'où m.
$$\ddot{x} + \frac{k}{m} \cdot x = 0$$

1) la solution de cette équation différentielle est de la forme suivante: $x = x_m . cos(\omega_o . t + \varphi)$

avec:
$$\omega_o = \sqrt{\frac{m}{K}} = \sqrt{\frac{0.2}{20}} = 10 rad / s$$
 et $x_m = 2 cm$

Pour déterminer la valeur de j , on utilise les conditions initiales : à t=0, on a: x=1cm

En remplaçant dans (1) on a: 1 = 2.cos $\varphi \rightarrow \cos \varphi = \frac{1}{2}$

d'où:
$$\varphi = \cos^{-1} \frac{1}{2} = \frac{\pm \pi}{3}$$

Or le corps passe à t=0 du point d'abscisse x=+1cm dans le sens positif , donc sa vitesse v>0 à t=0.

Et on a :
$$v = \dot{x} = -x$$
. $\omega_0 \sin(\omega_0 . t + \varphi)$ et à $t = o : v = -x_m . \omega_0 \sin \varphi > 0$ $\varphi = -\frac{\pi}{3}$

d'où: ϕ < 0 donc: \sin ϕ < 0

Équation horaire du mouvement: $x = 2.10^{-2} .cos (10.t - \frac{\pi}{3})$