

Qu'est ce qu'un espèce amphotère?

I. Définition.

Un ampholyte (nom) ou une espèce amphotère (adjectif) est une espèce chimique pouvant se comporter soit comme un acide soit comme une base.

II. Conséquence.

Il appartient à deux couples acide-base: dans un couple sous forme d'acide et dans l'autre couple sous forme de base.

Exemples

Il y a deux espèces amphotères à connaître:

- L'eau H₂O qui appartient aux deux couples acide-base:

 H_3O^+/H_2O et H_2O/OH^- Acide Base Acide Base

- L' ion hydrogénocarbonate HCO3- qui appartient aux deux couples acide-base:

 CO_2 , H_2O/HCO_3 et HCO_3 - $/CO_3$ ²-

Acide Base Acide Base

Il en existe beaucoup d'autres. Pour qu'une espèce soit amphotère, il faut qu'elle puisse soit capter soit céder un proton H⁺.

III. Attention: Nomenclature à connaître

H₃O⁺: ion oxonium ou hydronium

OH ou HO: ion hydroxyde

CO₂, H₂O ou H₂CO₃: dioxyde de carbone dissous ou acide carbonique

HCO₃⁻: ion hydrogénocarbonate

CO₃²-: ion carbonate

H₂O: eau

Exercice 1:

Parmi les espèces écrites ci-dessous, indiquer les espèces amphotères en précisant les couples acide-base correspondants:

HS⁻; C₆H₅NH₃; HCO₃⁻; C₂H₅OH; H₂PO₄⁻

Exercice 2:

Les acides α – aminés existent majoritairement en solution sous forme d'amphions ou zwitterions qui sont des espèces amphotères. Ainsi la glycine NH₂CH₂COOH existe majoritairement sous la forme NH₃⁺CH₂COO⁻.

Écrire les deux couples correspondant à l'espèce amphotère en précisant à chaque fois quel est l'acide et quelle est la base.

Exercice 3:

L'acide phosphorique est un triacide. C'est un antioxydant de code E338. Il est présent dans le Coca-Cola. Il peut perdre successivement trois protons H⁺.

- a) Donner les formules des trois produits obtenus par perte successive de proton.
- b) Ecrire les couples acide-base correspondants.
- c) Parmi toutes les espèces obtenues successivement, lesquelles sont des espèces amphotères ; justifier.

Date de version : 30/05/2023Auteur : Équipe Physique2/2