

1/2

Acide éthanoïque dans l'eau

I. Équation traduisant la réaction de l'acide éthanoïque dans l'eau

II. Réaction de l'acide éthanoïque dans l'eau

1.
$$CH_3COOH + H_2O = CH_3COO^- + H_3O^+$$

2.
$$CH_3COOH$$
 $CH_3COO^ PH_3COO^-$

L'espèce prédominante à pH = 3,6 est l'acide éthanoïque

III. Mélange stœchiométrique

Le mélange est stœchiométrique si les réactifs sont tous entièrement consommés à l'état final, c'est donc le mélange le plus efficace. Le tableau d'avancement relatif à une réaction chimique permet de déterminer si, à partir des quantités initiales des réactifs, le mélange est stœchiométrique.

Date de version : 30/05/2023 Auteur : Équipe Physique

http://www.accesmad.org

État	Avancement	$CH_{3}COOH_{(aq)} + H_{2}O_{(I)}$ $CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$				
		Quantité de matière (en mol)				
Initial	$x_i = 0$	2,7.10-4	En excès (car solvant)	0	0	
Intermédiaire	×	2,7.10 ⁻⁴ - x	En excès (car solvant)	×	×	
Final	x _f = 2.10 ⁻⁵ mol	$2,7.10^{-4} - x_f$ = $2,5.10^{-4}$	En excès (car solvant)	x _f = 2.10 ⁻⁵	x _f = 2.10 ⁻⁵	

IV. EXEMPLE

	Concentration molaire initiale d'acide éthanoïque	Constante d'équilibre	Taux d'avancement final
Etude pHmétrique	C ₁ = 2,7 . 10 ^{- 3} mol / L	K ₁ = 1,6 . 10 ^{- 5}	τ ₁ = 7,70 . 10 - 2
Etude conductimétrique	C ₂ = 1,0 . 10 - 1 mol / L	K ₂ = 1,6 . 10 ^{- 5}	τ ₂ = 1,25 . 10 ^{- 2}

V. Comment calculer l'avancement maximal de cette réaction?

Un avancement maximal se calcule, quelle que soit la réaction, à partir du d'avancement. Il se calcule à partir de la consommation totale d'un des réactifs. Si la réaction est totale alors l'avancement final coïncide avec, sinon l'avancement final se détermine expérimentalement.

	Avancement	CH3 - COOH (aq)	H ₂ 0(L) =	: CH ₃ - COO - (aq)	+ H ₃ O+(aq)	(1)
Etat initial	X= 0 mol	n ₁ = 2,7 x 10 ⁻⁴ mol	excès	0	0	
Etat final théorique	X=X _{max}	n ₁ - X _{max} = 0 mol	excès	X _{max}	X _{max}	
Etat final expérimental ou état d'équilibre	X=X _{final}	n ₁ - X _{final}	excès	X _{final}	X _{final}	

Date de version : 30/05/2023 Auteur : Équipe Physique 2/2