

Fonction réciproque

1. Rappel

Soient E et F deux ensembles non vides.

1.1 Définition

Une application f de E dans F est bijective si quel que soit l'élément y de F, il existe un élément unique x de E tel que f(x) = y.

1.2 Théorème

Si f est une bijection de E dans f, alors il existe une application notée f $^{-1}$ de F dans E, appelée réciproque de f, et définie par x = $f^{-1}(y)$ si et seulement si f(x) = y.

$$f^{-1}: F \to E$$
 si et seulement si $f: E \to F$
$$y \longmapsto f^{-1}(y) = x$$
 $x \longmapsto f(x) = y$

$$\begin{cases}
 f^{-1}(y) = x \\
 y \in F
 \end{cases}$$
 si et seulement si $\begin{cases}
 f(x) = y \\
 x \in E
 \end{cases}$

On a donc : si y est l'image de x par f, alors x est l'image de y par f⁻¹.

1.3 Propriétés

- Soit f^{-1} la réciproque de f, alors f o $f^{-1}(y)$ = y pour tout y de F, et f^{-1} o f(x) = x pour tout x de E.
- Si f ⁻¹ est la symétrique de f, alors f est la symétrique de f ⁻¹: on dit que f et f ⁻¹ sont symétrique l'une de l'autre.

Exemple

La fonction f définie par f(x) = 2x+1 est une bijection de IR dans IR, et admet donc une réciproque de IR dans IR.

Si on pose y = f(x), on a y = 2x+1, donc
$$x = \frac{y-1}{2}$$

La réciproque de f est donc l'application f¹ de IR dans IR, définie par $f^{-1}(y) = \frac{y-1}{2}$.

Exercice: Déterminer f o f-1 (y) et f-1 o f (x).

2. Fonction bijective

2.1 Théorème

Si une fonction f est continue et strictement monotone sur une intervalle I, alors elle réalise une bijection de I sur J = f(I).

Elle admet une réciproque f⁻¹ de J vers I, continue, bijective, et de même sens de variation que f.

2.2 Remarques

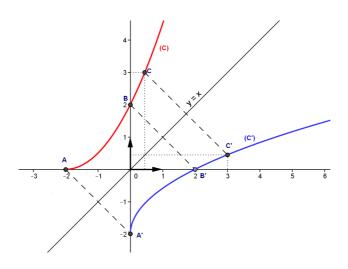
- C'est une condition suffisante mais pas nécessaires, une fonction peut être bijective sans qu'elle soit continue et strictement monotone.

- Si M(x; y) est une point de la courbe représentative de f, alors y = f(x).

Si f est bijective, et f^{-1} la réciproque de f, alors $x = f^{-1}(y)$. Donc le point M'(y , x) appartient à la courbe représentative de f^{-1} .

Or le point M et M' sont symétrique par rapport à la droite d'équation y = x.

Donc la courbe de f est la symétrique de celle de f par rapport à la droite d'équation y = x



2.3 Application : fonction racine n-ième (n ∈ IN *)

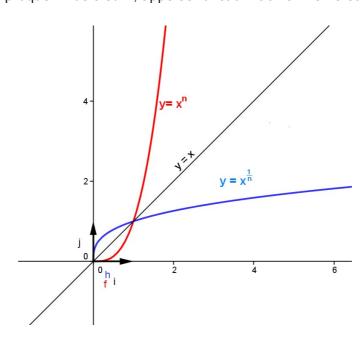
Soit f la fonction définie [0; $+\infty$ [par $f(x) = x^n$, où n est un entier naturel non nul.

f est continue et strictement croissante sur [0 ; $+\infty$ [.

Donc f est réalise une bijection de $[0; +\infty]$ sur $J = f([0; +\infty]) = [0; +\infty]$.

Ainsi elle admet admet une réciproque f⁻¹ de J sur I, appelée fonction racine n-ième et notée

$$f^{-1}(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$$



Cas particulier : la réciproque de la fonction carrée sur [0 ; +∞ [est la racine carrée.

Auteur: Équipe maths