

Limite d'une fonction

1. Fonctions de référence :

X o est un réel quelconque.

1.1 Fonction constante : f(x)=a $(a \in R)$

$$\lim_{x \to +\infty} f(x) = a$$

$$\lim_{x \to -\infty} f(x) = a$$

$$\lim_{x \to \infty} f(x) = a$$

1.2 Identité de IR : f(x)=x

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to -\infty} f(x) = -\infty \\ \lim_{x \to x_0} f(x) = x_0}} f(x) = x_0$$

1.3 Fonction inverse : $f(x) = \frac{1}{x}$

$$\lim_{x \to +\infty} f(x) = 0$$
$$\lim_{x \to -\infty} f(x) = 0$$

1. 4 Fonctions trigonométriques

$$\lim_{x \to x_0} \sin x = \sin x_0$$
$$\lim_{x \to x_0} \cos x = \cos x_0$$

Remarque

Les fonctions sinus et cosinus n'ont pas de limite à l'infini. Et plus généralement, les fonctions périodiques n'ont pas de limite à l'infini.

2. Opérations sur les limites

2.1 Limite d'une somme :

<u>lim f</u>	<u>lim g</u>	<u>lim (f+g)</u>
1	ľ	I+I'
$+\infty$	$+\infty$	$+\infty$
$-\infty$	$-\infty$	$-\infty$
$+\infty$	$-\infty$	Forme indéterminée
I	∞	∞

2.2 Limite d'un produit :

<u>lim f</u>	<u>lim g</u>	<u>lim (f.g)</u>
I	ľ	1.1'
$+\infty$	$+\infty$	$+\infty$
$-\infty$	$-\infty$	$-\infty$
$-\infty$	$-\infty$	$+\infty$
$l \neq 0$	∞	∞
0	∞	Forme indéterminée

2.3 Limite d'un quotient :

<u>lim f</u>	<u>lim g</u>	<u>lim (f/g)</u>
I	$l' \neq 0$	1/1′
∞	∞	Forme indéterminée
1	∞	0
0	0	Forme indéterminée
l > 0	$0^{\scriptscriptstyle +}$	$+\infty$
l > 0	0^{-}	$-\infty$
∞	0	∞

Remarque

Lorsque la limite d'une fonction est de la forme $\frac{l}{O}$ où $l \neq 0$, alors le résultat est ∞ . Pour savoir si c'est $+\infty$ ou $-\infty$, on étudie le signe du dénominateur.

Exemple:
$$f(x) = \frac{1}{x}$$

$$\lim_{x \to 0^{+}} f(x) = +\infty$$

$$\lim_{x \to 0^{+}} f(x) = -\infty$$

2.4 Limite d'une fonction irrationnelle :

Si
$$f(x) \ge 0$$
 dans un intervalle ouvert contenant x_0 et $\lim_{x \to x_0} f(x) = l$ alors $\lim_{x \to x_0} \sqrt{f(x)} = \sqrt{l}$
Si $\lim_{x \to x_0} f(x) = +\infty$ alors $\lim_{x \to x_0} \sqrt{f(x)} = +\infty$

Les formes indéterminées

o Limite d'un polynôme :

La limite d'une fonction polynôme quand x tend vers l'infini, est égale à la limite de son terme du plus haut degré.

Exemple:

$$f(x) = x^{2} - x + 1$$

$$\lim_{x \to +\infty} f(x) = +\infty - \infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^{2} \left[1 - \frac{1}{x} + \frac{1}{x^{2}} \right] = \lim_{x \to +\infty} x^{2} = +\infty$$

Limite d'une fonction rationnelle

La limite d'une fonction rationnelle est égale à la limite du quotient des termes du plus haut degré du numérateur et du dénominateur (quand x tend vers l'infini)

Exemple:
$$f(x) = \frac{2x^2 + 1}{x^3 - 1}$$

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x^2 + 1}{x^3 - 1} = \frac{+\infty}{+\infty} = \text{F.I}$

Levons l'indétermination :

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 (2 + \frac{1}{x^2})}{x^3 (1 - \frac{1}{x^3})} = \lim_{x \to +\infty} \frac{2x^2}{x^3} = \lim_{x \to +\infty} \frac{2}{x} = 0$$

Si la limite d'une fonction rationnelle en x_0 est de la forme $\frac{0}{0}$, on met $x-x_0$ en facteur et on simplifie

Exemple:
$$f(x) = \frac{x^2 - 1}{x - 1}$$

$$\lim_{x \to 1} f(x) = \frac{0}{0} = F.I$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2$$

Limite d'une fonction irrationnelle

Si la limite d'une fonction irrationnelle est de la forme $\frac{0}{0}$ $ou + \infty - \infty$, on lève l'indétermination en utilisant l'expression conjuguée..

Si elle est de la forme $\frac{\infty}{\infty}$, on met les termes de plus hauts degrés en facteur

Limite des fonctions trigonométriques

Limites classiques

•
$$\lim_{x \to 0} \frac{\sin x}{x} = 0$$

- $\lim_{x \to 0} \frac{\tan x}{x} = 0$
- $\lim_{x \to 0} \frac{1 \cos x}{x} = 0$
- $\lim_{x \to 0} \frac{1 \cos x}{x^2} = \frac{1}{2}$

3. Limites et inégalités

Théorème 1

Soient $f(x) \le g(x)$ quel que soit x.

- si $\lim f(x)=1$ et $\lim g(x)=1$ ' alors $1 \le 1$ '
- si $\lim f(x) = +\infty$ alors $\lim g(x) = +\infty$
- si $\lim g(x) = -\infty$ alors $\lim f(x) = -\infty$

Théorème 2

Si $f(x) \le g(x) \le h(x)$ quel que soit x, et $\lim f(x) = \lim h(x) = 1$ alors $\lim g(x) = 1$

Théorème 3

$$\lim_{x \to x_0} f(x) = I \text{ équivaut à } \lim_{x \to x_0} |f(x) - I| = 0$$

Conséquence

Si $|f(x)-I| \le g(x)$ quel que soit x et si $\lim g(x)=0$ alors $\lim f(x)=I$

Théorème 4

Soit I un intervalle et x₀ un élément de I

Si g est bornée sur l et $\lim_{x\to x_0} f(x)=0$, alors $\lim_{x\to x_0} g(x)$. f(x)=0

4. Unicité de la limite

Théorème

Si une fonction f admet une limite en un point x_0 , ou à l'infini, alors cette limite est unique

Auteur : équipe de maths