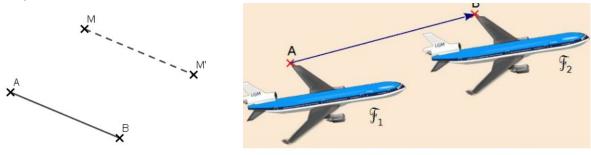


Translations et vecteurs

1. Translation

1.1 Définition


Une translation est un déplacement rectiligne avec une direction donnée , un sens donné et une longueur donnée .

Effectuer la translation d'une figure F est synonyme d'un déplacement de cette figure sans la retourner ni la déformer suivant :

- une direction (qui est une droite)
- un sens;
- une longueur.

Soit M un point et AB une longueur.

Si M' est l'image du point M par la translation qui transforme le point A en B.On dit que M' est l'image du point M par la translation qui transforme A en B.

1.2 Propriétés

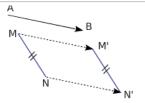
La translation conserve toutes les propriétés géométriques d'une figure.

La translation conserve :

les longueurs, les périmètres et les aires de figures;

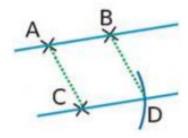
les mesures d'angles;

l'alignement, le parallélisme et l'orthogonalité, etc...


Exemple

l'image d'un segment est un segment de même longueur qui lui est parallèle.

Date de version : Juillet 2022Auteur : Ivo Siansa1/5

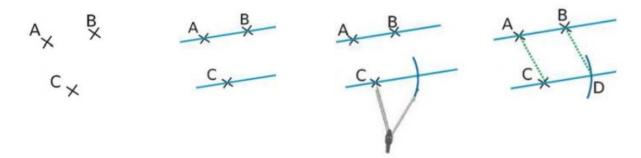


Soit la translation qui transforme A en B.

Notons D l'image de C par cette translation. Le quadrilatère ABDC est un parallélogramme.

La translation transforme une droite en une autre droite qui lui est parallèle.

1.3 Construction de l'image d'un point


1.3.1 Énoncé

Construire le point D image du point C par la translation qui transforme A en B

1.3.2 Programme de construction

- 1) On trace la droite (AB)
- 2) On trace la droite (d) parallèle à (AB) passant par le point C
- 3) On reporte la distance AB sur cette droite à partir du point C dans le sens de A vers B
- 4) on obtient le point D.

1.3.3 La figure

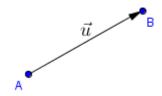
2. Vecteurs

Soit t la translation qui envoie A sur A', B sur B' et C sur C'. Les couples de points (A; A'), (B; B') et (C; C') définissent un vecteur caractérisé par :

Date de version : Juillet 2022Auteur : Ivo Siansa2/5

- une direction : celle de la droite (AA'),

- un sens : de A vers A',


- une longueur : la longueur AA'.

2.1 Définition

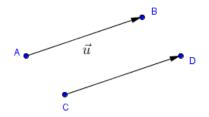
Un couple de points (A; B) détermine un vecteur noté \overrightarrow{AB} défini par :

- sa direction qui est la droite (AB)
- son sens de A vers B
- sa norme qui est la distance AB

On représente un vecteur par une flèche dont l'origine est A et l'extrémité B

Un vecteur est caractérisé par sa direction, son sens et sa longueur ou sa norme.

Un vecteur peut se noter avec une lettre minuscule avec une flèche au dessus, $\vec{u}, \vec{v}, \vec{w}$.


Exemple

- 1) Construire le vecteur $\vec{u} = \overrightarrow{AB}$ avec AB = 4 cm.
- 2) Placer un point C qui n'est pas sur la droite (AB), puis construire le point D tel que $\vec{u} = \vec{CD}$

2.2 Égalité de deux vecteurs

Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux lorsqu'ils ont même direction, même sens et même norme.

Soit A, B, C et D quatre points deux à deux distincts. Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si le quadrilatère ABDC est un parallélogramme.

Date de version : Juillet 2022Auteur : Ivo Siansa3/5

2.3 Vecteur nul et vecteurs opposés

2.3.1 Vecteur nul

Le vecteur \overrightarrow{AB} est nul si A = B. On l'écrit $\overrightarrow{0}$.

2.3.2 Vecteurs opposés

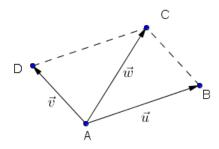
On dit que deux vecteurs sont opposés lorsqu'ils ont la même direction, des sens contraires et même norme.

L'opposé d'un vecteur \vec{u} se note $-\vec{u}$.

L'opposé du vecteur \overrightarrow{AB} est \overrightarrow{BA} c'est-à-dire $-\overrightarrow{AB} = \overrightarrow{BA}$

2.4 Somme de deux vecteurs

2.4.1 Définition


Considérons trois points non alignés A, B, C

La somme du vecteur \overrightarrow{AB} et du vecteur \overrightarrow{BC} est le vecteur AC . On écrit :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Cette relation s'appelle relation de Chasles.

Plus généralement, soit \vec{u} , \vec{v} , \vec{w} trois vecteurs et A,B,C,D quatre points tel que : $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AD}$ le vecteur $\vec{u} + \vec{v}$ est le vecteur $\vec{w} = \overrightarrow{AC}$ où ABCD est un parallélogramme

2.4.2 Règle du parallélogramme

ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

2.5 Translation et vecteur

Vocabulaire

Soient A et B des points du plan. La translation qui transforme A en B est notée $t_{\overline{AB}}$. On lit translation de vecteur \overline{AB}

Date de version : Juillet 2022 Auteur : Ivo Siansa 4/5

Pour quatre points A,B,M,M'. L'image de M par la translation de vecteur \overline{AB} est M' signifie \overline{MM} '= \overline{AB} .

Date de version : Juillet 2022Auteur : Ivo Siansa5/5