

Géométrie dans l'espace

Droites et plans dans l'espace

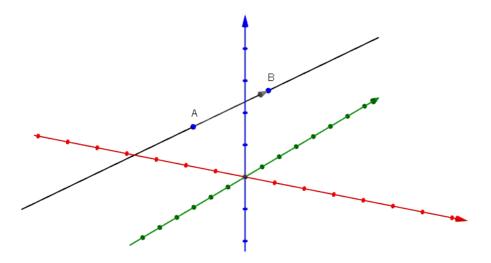
1. Équations paramétriques

1.1 Équation paramétrique d'une droite

1.1.1 Définition d'une droite

La droite (AB) est l'ensemble des points M tel que les vecteurs \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires.

La droite (D) passant par le point A de vecteur directeur \vec{u} est l'ensemble des points M tel que les vecteurs \overrightarrow{AM} et \vec{u} sont colinéaires.



1.1.2 Équation paramétrique d'une droite

Soit (D) une droite passant par le point $A(x_A; y_A; z_A)$ et dirigée par le vecteur $\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ et soit M(x;y;z) un point de l'espace .

On a $M \in (D)$ si et seulement s'il existe un réel k tel que : $\overline{AM} = k\vec{u}$ (signification de \overline{AM} et \vec{u} colinéaires).

Donc
$$\begin{pmatrix} x - x_A \\ y - y_A \\ z - z_a \end{pmatrix} = \begin{pmatrix} ka \\ kb \\ kc \end{pmatrix}$$
.

Ce qui est équivalent à : $\begin{cases} x = k . a + x_A \\ y = k . B + y_A \\ z = k . c + z_A \end{cases}$

C'est l'équation paramétrique de la droite (D).

Auteur : Ivo Siansa

Exemple

Soit A (1; -4; 3) et $\vec{u} \begin{pmatrix} 5 \\ 1 \\ -2 \end{pmatrix}$. Alors la droite (d) passant par A et de vecteur directeur \vec{u} admet pour

représentation paramétrique : $\begin{cases} x = 5k+1 \\ y = k-4 \\ z = -2k+3 \end{cases}$

1.2 Équation paramétrique d'un plan

1.2.1 Définition d'un plan

On considère trois points non alignés de l'espace A, B, C. L'ensemble des points M de l'espace défini par $\overline{AM} = s \, \overline{AB} + t \, \overline{AC}$ où k et t sont des réels est le plan (ABC).

Le plan passant par le point A dirigé par les vecteurs \vec{u} et \vec{v} non colinéaires est l'ensemble des points M de l'espace défini par : $\overrightarrow{AM} = s\,\vec{u} + t\,\vec{v}$.

1.2.2 Équation paramétrique d'un plan

L'espace est muni d'un repère orthonormé (O , \vec{i} , \vec{j} , \vec{k}) .

Si $\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ et $\vec{v} \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$. Le plan (P) passant par le point A(x_A ; y_A ; z_A) et dirigé par les vecteurs \vec{u} et

 $\langle c \rangle$ $\langle c' \rangle$ \vec{v} a pour équation paramétrique de la forme : $\begin{cases} x = x_A + at + a's \\ y = y_A + bt + b's \\ z = z_A + ct + c's \end{cases}$

Exemple

L'espace est muni d'un repère orthonormé (O , \vec{i} , \vec{j} , \vec{k}) .

On donne les points suivants A (2,-1,-3), B (0,1,4) et C (-3, 0, 0)

Donner la représentation paramétrique du plan (ABC).

Soit M(x, y,z)

 $M \in (ABC)$ s'il existe s et t deux réels tels que : $\overrightarrow{AM} = s \overrightarrow{AB} + t \overrightarrow{AC}$.

On a donc: $M \in (ABC)$ si et seulement si $\begin{pmatrix} x-2 \\ y+1 \\ z+3 \end{pmatrix} = s \begin{pmatrix} -2 \\ 2 \\ 7 \end{pmatrix} + t \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix}$

Finalement, L'équation paramétrique de (ABC) est :

$$\begin{cases} x = 2 - 2t - 5s \\ y = -1 + 2t + s \\ z = 3 + 7t + 3s \end{cases}$$

2. Équation cartésienne d'un plan

2.1 Vecteur normal

Soient \vec{u} , \vec{v} , \vec{n} trois vecteurs de l'espace . Le vecteur \vec{n} est un vecteur normal au plan (P) dirigé par \vec{u} et \vec{v} si \vec{n} est orthogonal à \vec{u} et à \vec{v} .

2.2 Équation cartésienne d'un plan

2.2.1 Forme générale

L'espace est muni d'un repère orthonormé (O , \vec{i} , \vec{j} , \vec{k}).

Tout plan admet une équation cartésienne de la forme : ax + by + cz + d = 0. Le vecteur normal à ce plan

est: $\vec{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Réciproquement, soit $\vec{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ et A(x_A , y_A , z_A). Le point M(x, y, z) appartient au plan (F) passant par A de

vecteur normal \vec{n} si \overrightarrow{AM} et \vec{n} sont orthogonaux, c'est-à-dire que i \overrightarrow{AM} • \vec{n} = 0

Après calcul, on arrive à la forme : ax + by + cz + d = 0

2.2.2 Détermination du vecteur normal

Pour un plan passant par trois points A,B,C; un vecteur normal est $\overrightarrow{AB} \wedge \overrightarrow{AC}$

Exemple

Déterminer une équation cartésienne du plan (F) passant par A (3; -1; 2) de vecteur normal $\vec{n} \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}$

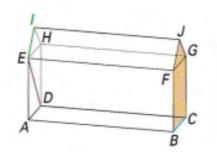
Réponse

M(x;y;z) appartient à (F) si si \overline{AM} et \overline{n} sont orthogonaux, c'est-à-dire que i \overline{AM} • \overline{n} = 0 c'est-à-dire , (x-3)•1 + (y+1)(-3) +(z-2)(-5) = 0 . On a alors x -3y -5z +4 = 0.

Date de version : Juillet 2022Auteur : Ivo Siansa3/5

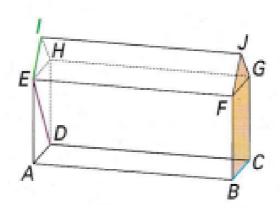
3. Positions relatives de droites et de plans

3.1 Positions relatives de deux droites



Intersection	Position	Exemple
Une droite	Les droites sont confondues	
Un point	Les droites sont sécantes	$(IJ) \cap (EI) = I$
Vide	Les droites ne sont pas coplanaires	(IJ) et (AC) ne sont pas coplanaires
	Les droites sont coplanaires mais strictement parallèles	(IJ) et (AB) sont parallèles

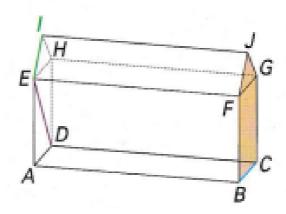
3.2 Positions relatives de deux plans



Intersection	Position	Exemple
Un plan	Les plans sont confondus	$(ABC)\cap (ADC)=(ABC)i$
Une droite	Les plans sont sécants	$(ABC) \cap (FBC) = (BC)$
Vide	Les plans sont strictement parallèles	

Date de version : Juillet 2022Auteur : Ivo Siansa4/5

3.3 Position relative d'une droite et d'un plan



Intersection	Position	Exemple
Une droite	La droite est incuse dans le plan	$(ABC) \cap (ADC) = (ABC)$
Un point	La droite et le plan sont sécants	$(ABC) \cap (FBC) = (BC)$
Vide	La droite et le plan sont strictement parallèles	$(ED) \cap (FGJ) = \emptyset$

Date de version : Juillet 2022 Auteur : Ivo Siansa 5/5