

Matrices 2x2: exercices

Exercice 1

Déterminer la matrice A.B et B.A. dans les cas suivants

1)
$$A = \begin{pmatrix} -1 & 5 \\ \frac{2}{3} & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} \frac{3}{2} & 1 \\ 2 & 4 \end{pmatrix}$

2)
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix}$.

3)
$$A = \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 4 & -1 \\ 3 & \frac{1}{2} \end{pmatrix}$

Exercice 2

Soit
$$A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

Calculer A² et A³

Exercice 3

Soient
$$A = \begin{pmatrix} 2 & -1 \\ 0 & 2 \end{pmatrix}$$
 $B = \begin{pmatrix} -\frac{1}{2} & -1 \\ 1 & \frac{3}{2} \end{pmatrix}$.

Déterminer une matrice C telle que A+C = B

Exercice 4

Déterminer les réels x et y tels que $\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} x & y \\ 4 & -2 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix}$

Exercice 5

$$A = \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{-1}{4} & \frac{3}{4} \end{pmatrix}$$

Calculer A.B. Que peut-on en conclure ?

Exercice 3

Montrer que les matrices suivantes sont inverses l'une de l'autre.

a)
$$A = \begin{pmatrix} 2 & 3 \\ -3 & -4 \end{pmatrix}$$
 et $B = \begin{pmatrix} -4 & -3 \\ 3 & 2 \end{pmatrix}$

b)
$$A = \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix}$$
 et $B = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$