

Vecteurs et points: Exercices

Exercice 1

On considère trois points A,B,C de l'espace. On désigne par I le milieu de [BC].

- 1) Montrer que pour tout point M de' l'espace, on a $\overline{MA} + \overline{MC} = 2\overline{MI}$.
- 2) Déterminer le point M pour que l'on ait : $\overrightarrow{MA} = \overrightarrow{MB} + \overrightarrow{MC}$.
- 3) Soit f l'application de l'espace qui à tout point M associe le vecteur $\vec{f}(M) = 3 \overrightarrow{MA} 2 \overrightarrow{MB} + \overrightarrow{MC}$.
- a) Montrer qu'il existe un point G et un seul tel que $\vec{f}(G) = \vec{0}$. En déduire que pour tout point M de l'espace, $\vec{f}(M) = 2 \, \overline{MG}$.

Exercice 2

L'espace est muni d'un repère $(O; \vec{i}; \vec{j}; \vec{k})$. On considère les points A(1,2,-1) ; B(2,1,-3) ; C(3,-2,1) ; D(2,-1,-3).

- 1) Montrer que ces quatre points ne sont pas coplanaires .
- 2) Soient E,F,G,H les milieux de [AB], [BC], [CD], [DA].
- a) Calculer leur coordonnées.
- b) Calculer les composantes des vecteurs \overline{EF} et \overline{GH} . Que peut-on dire du quadrilatère EFGH ?
- 3) Calculer les coordonnées de I et J milieux de [AC] et [BD]. Que peut-on dire des quadrilatères IFJH et IEJG?

Exercice 3

L'espace est muni d'un repère (O;i;j;k) .On donne les points A(1;-2;-3); B(7;2;-2):C(-7;-8;5).

- 1) Soient I le milieu de {AB] et J le milieu de [AC]. Calculer les coordonnées de I et J.
- 2) Calculer les coordonnées du point K défini par $\overrightarrow{AK} = \overrightarrow{AB} + \overrightarrow{AC} + 2\overrightarrow{IJ}$
- 3) Montrer que les points A,C,K sont alignés.

1. Exercice 4

1) L'espace est muni d'un repère (O;i;j;k). Soient les points A(-4,2,--1); B((-1,-2,4) et C(-2,3,1) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$, AB et AC. En déduire une valeur approchée à 10-1 près de la mesure en degré de l'angle \overrightarrow{BAC} .

2) Même question pour A(1,3,-5), b(4,-1,2) c(3,2,6).

Exercice 5

L'espace est muni d'un repère (o; i; j; k) . On donne les vecteurs $\vec{u} \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$; $\vec{v} \begin{pmatrix} 4 \\ -5 \\ 1 \end{pmatrix}$

- 1) calculer $\vec{u} \cdot \vec{v}$, $||\vec{u}||$, $||\vec{v}||$, $||\vec{u} + \vec{v}||$
- 2) Déterminer l'angle géométrique défini par \vec{u} et \vec{v}

Exercice 6

L'espace est muni d'un repère $(O; \vec{i}; \vec{j}; \vec{k})$. Calculer les composantes de $\vec{u} \wedge \vec{v}$ dans les cas suivants :

- 1) $\vec{u} \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$;
- 2) $\vec{u} \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$
- 3) $\vec{u} \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix}$

Exercice 7

L'espace est muni d'un repère $(O; \vec{i}; \vec{j}; \vec{k})$. Soient les vecteurs $\vec{u} \begin{pmatrix} \frac{2}{3} \\ \frac{-1}{3} \\ \frac{-2}{3} \end{pmatrix}$ et $\vec{v} \begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}$.

1) Montrer que \vec{u} et \vec{v} sont unitaires et orthogonaux.

Auteur : Ivo Siansa

2)Déterminer un vecteur \vec{w} tel que (\vec{u} , \vec{v} , \vec{w}) soit une base orthonormée de l'espace