

Séquence 1 : Droites dans le plan

1. Équation cartésienne d'une droite :

1.1 Droite définie par deux points

Le plan est muni d'un repère orthonormé (O , \vec{i} , \vec{j}) .

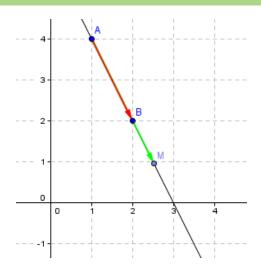
Soit A(x_A ; y_A) et B(x_B ; y_B) deux points distincts du plan et M(x; y) un point quelconque de ce plan.

Le point M appartient à la droite (AB) si et seulement si les point A, B, M sont alignés ; donc si et seulement si les vecteurs \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires.

En d'autres termes , (AB) est l'ensemble des points M du plan tels que \vec{AM} et \vec{AB} sont colinéaires.

La droite (AB) est définie par (AB) = { M(x; y) / \overrightarrow{AM} // \overrightarrow{AB} }.

Le vecteur \vec{AB} est appelé vecteur directeur de la droite (AB).

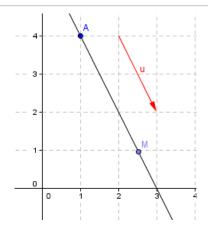


1.2 Droite définie par un point et un vecteur :

Soit A(x_A ; y_A) et $\vec{u} {\alpha \choose \beta}$ un vecteur non nul de ce plan . Soit (D) la droite passant par A de vecteur directeur \vec{u} .

(D) est l'ensemble des points M tel que \vec{AM} et \vec{u} sont colinéaires : (D) = { M(x; y)/ \vec{AM} // \vec{u} }

Date de version : Mai 2021 Auteur : 1/4



1.3 Équation cartésienne d'une droite

Le plan est muni d'un repère orthonormé direct (O , \vec{i} , \vec{j}). Soit (D) une droite de ce plan.

Un point M(x y) appartient à la droite (D) si les coordonnées (x ; y) de M sont liées par une relation de la forme ax + by + c = 0, où a et b ne sont pas simultanément nuls.

Cette relation est appelée équation cartésienne de (D)

Réciproquement:

Soit (E) = $\{ M(x; y) / ax + by + c = 0 \}.$

(E) est la droite de vecteur directeur $\vec{u} \binom{-b}{a}$ où a et b ne sont pas simultanément nuls.

Exemples:

- 2x -3y+ 4 = 0 est l'équation cartésienne de la droite de vecteur directeur $\vec{u} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
- -x +4y + 3 = 0 est l'équation cartésienne de la droite de vecteur directeur $\vec{u} \begin{pmatrix} -4 \\ -1 \end{pmatrix}$

1.4 Détermination de l'équation cartésienne d'une droite

Soit (D) la droite passant par A (x_A; y_A) et de vecteur directeur $\vec{u} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$

M (x,y) appartient à cette droite si les vecteurs \overrightarrow{AM} et \overrightarrow{u} sont colinéaires .

Les composantes de \overrightarrow{AM} sont : $\overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$.

Donc M (x, y) appartient à cette droite si β (x - x_A) - α (y - y_A) = 0.

En développant, on obtient l'équation de la forme ax + by + c = 0.

Si la droite passe par deux points A et B, on prend comme vecteur directeur le vecteur \vec{AB} .

Date de version : Mai 2021 Auteur : 2/4

Exemple:

Soient A(1; 3) et
$$\vec{u} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 et M (x,y).

On a
$$\overrightarrow{AM} \begin{pmatrix} x-1 \\ y-3 \end{pmatrix}$$

Le point M(x; y) appartient à la droite passant par A et de vecteur directeur $\vec{u} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ si 2(x-1) – 3(y-3) = 0

En développant , on trouve (D) : 2x-3y+7=0

Soit (D) la droite passant par A (x_A; y_A) et de vecteur directeur $\vec{u} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$. L'équation de (D) est de la forme ax + by + c = 0, avec a = β et b = - α .

De plus, les cordonnées de A vérifient l'équation . Ainsi, on obtient c en remplaçant x par x A et y par yB, et on a alors l'équation de la droite.

Reprenons le même exemple (D) : ax + by + c = 0 avec a = 2 et b = -3. En remplaçant x par 1 et y par 3 , on obtient 2 x 1-3 x 3 + c = 0. Ce qui donne c = 7, d'où le résultat.

1.5 Vecteur normale à une droite

Soit (D) une droite.

On appelle vecteur normal à (D) tout vecteur orthogonal à tout vecteur directeur de (D).

Le plan est muni d'un repère orthonormé direct (O , \vec{i} , \vec{j}). Soit (D) une droite d'équation ax + by + c = 0. Le vecteur $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$ est un vecteur normal à (D).

En effet, $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ est un vecteur directeur de (D), et $\vec{u} \cdot \vec{n} = \begin{pmatrix} -b \\ a \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = -ba + ab = 0$

2. Équations réduites

2.1 Définition:

La pente d'une droite est la tangente de l'angle que fait cette droite avec l'axe des abscisses

2.2 Forme générale

L'équation réduite d'une droite est : y = ax + b où a est la pente et b l'ordonnée à l'origine. (Voir activités).

Exemple (D): y = 2x + 3

Date de version : Mai 2021 Auteur : 3/4

2.3 Construction

On peut dresser un tableau de valeur, mais la plus pratique c'est l'utilisation de la pente et de b.

Exemple y= 2x + 3

