

Mole – Masse molaire – Volume molaire

I- Le nombre d'Avogadro

La masse d'un atome (ou d'une molécule ou d'un ion) est extrêmement petite. Il est impossible de faire des expériences quantitatives de chimie à l'échelle atomique. Les chimistes prennent alors un nombre d'atomes bien déterminé. Ce nombre, noté N_{Δ} s'appelle nombre d'Avogadro.

 $N_A = 6,02.10^{23} \text{ mol}^{-1}$

II- La mole

Une mole de particules est la quantité de matière formée par N_A = 6,02.10²³ particules.

Exemples:

- Une mole d'atomes de cuivre est un groupe de N_A = 6.02.10²³ atomes de cuivre.
- Une mole d'atomes de sodium est un groupe de N_A=6,02.10²³ atomes de sodium.
- Une mole de molécules de dihydrogène est un groupe de N_A =6.02.10²³ molécules de H_2 .

Une mole de molécules H_2O est un groupe de N_A = 6,02.10²³ molécules H_2O .

III- La masse molaire

3.1- Définition

La masse molaire M d'une entité élémentaire est la masse d'une mole de cette entité élémentaire ou la masse de 6.02.10²³ entités élémentaires. Elle s'exprime en g.mol⁻¹.

3.2 Masse molaire atomique

La masse molaire atomique est la masse d'une mole d'atomes c'est-à-dire la masse de 6,02.10²³ atomes.

Exemples:

Masse molaire atomique d'hydrogène: M(H):1g.mol⁻¹ = masse de 6.02.10²³ atomes d'hydrogène. Masse molaire atomique d'oxygène: M(O)= 16 g.mol⁻¹=masse de 6.02.10²³ atomes d'oxygène.

Masse molaire atomique du soufre: $M(S) = 32g.mol^{-1} = masse de 6.02.10^{23}$ atomes de soufre.

Masse molaire atomique (masse atomique) de quelques atomes

Nom de l'atome	Symbole	Masse d'une mole d'atomes
		(masse atomique) en g.mol ⁻¹
Hydrogène	Н	1
Carbone	С	12
Azote	N	14
Oxygène	0	16
Sodium	Na	23
Aluminium	Al	27
Soufre	S	32
Chlore	Cl	35,5
Fer	Fe	56
Cuivre	Cu	64
Zinc	Zn	65
Argent	Ag	108
Or	Au	197
Mercure	Hg	200,6
Plomb	Pb	207

3.3- Masse molaire moléculaire

La masse molaire moléculaire est la masse d'une mole de molécules c'est-à-dire la masse de 6,02.10²³ molécules.

Exemples: masse molaire moléculaire de l'eau

 $M(H_20) = 2xM(H) + 1xM(O)$

 $= 2 (1g.mol^{-1}) + 1(16g.mol^{-1})$

 $M(H_2O) = 18 \text{ g.mol}^{-1}$

3.4- Masse molaire ionique

La masse molaire ionique est la masse d'une mole d'ions c'est-à-dire la masse 6,02.10²³ ions.

4- Le volume molaire d'un gaz

4.1- Définition

Le volume molaire d'un gaz est le volume occupé par une mole de ce gaz (c'est-à-dire par 6,02.10²³ molécules de ce gaz).

4.2- Volume molaire dans les conditions normales de température et de pression. (CNTP)

Le volume molaire d'un gaz dépend de la température et de la pression atmosphérique.

Les conditions normales de température et de pression. (CNTP):

- Température «normale» θ= 0°C
- Pression «normale»P=1,013.105Pa

Dans les CNTP; le volume molaire d'un gaz est de 22,4L.

Soit $V_m = 22,4 \text{ L.mol}^{-1}$

Il est voisin de 24L à la température ordinaire de 20°C est sous la pression habituelle de 1atm (=1,013.10⁵Pa)

Date de version : 17/08/2021 Auteur : Equipe Physique 3/3