

Sujet bacc Physique série A avec corrigé – session 2020

Exercice 1

Une corde élastique OA, de longueur L, et de masse m = 50g est tendue horizontalement par une force \vec{F} d'intensité F = 5N. L'extrémité O de la corde est animée d'un mouvement sinusoïdal transversal d'équation horaire $y_0(t) = 2.10^{-3} \sin(200\pi t)$; y_0 en mètre (m) et t en seconde (s).

On néglige la réflexion et l'amortissement des ondes le long de la corde.

- 1. Qu'appelle-t-on onde transversale?
- 2. Calculer la longueur L de la corde si la célérité de propagation des ondes le long de la corde est v = 10ms⁻¹.
- 3. Définir et calculer la longueur d'onde λ de la vibration.
- 4. On considère un point M de la corde tel que OM = x = 7,5cm.
 - a) Écrire l'équation horaire du mouvement du point M.
 - b) Comparer les mouvements des points O et M.

Pour A2 seulement :

- 5. Représenter l'aspect de la corde à l'instant t = 2,5.10⁻²s.
- 1. Onde transversale : sens de déformation perpendiculaire à la direction de propagation

2.
$$F = \frac{mv^2}{L} \rightarrow L = \frac{mv}{F}$$
 AN: L = 1n

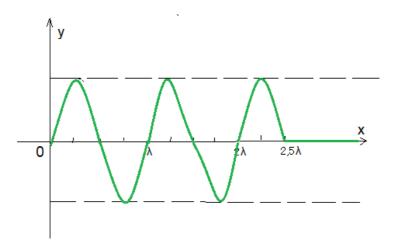
3. Longueur d'onde : distance parcourue par l'onde pendant une période

$$\lambda = \frac{v}{N}$$
 AN; $\lambda = \frac{10}{100}$ $\lambda = 0,1m$

4. a)
$$y_M(t) = a \sin(\omega t - \frac{2\pi x}{\lambda} + \varphi)$$
 avec $\varphi = 0$ et $\omega = 200\pi$
$$y_M(t) = 2.10^{-3} \sin(200\pi t - \frac{3\pi}{2}) ou y_M(t) = 2.10^{-3} \sin(200\pi t - \frac{\pi}{2})$$

b)
$$\Delta \varphi = |\varphi_M - \varphi_o| = \frac{\pi}{2}$$
; O et M vibrent en quadrature de phase

5. Équation cartésienne de
$$y_M$$
: $y_M = 2.10^{-3} \sin(\pi - \frac{2\pi x}{\lambda})$;


$$d = v.t = 25cm$$
 \rightarrow $\frac{d}{\lambda} = 2.5$ \rightarrow $d = 2.5\lambda$

х	0	$\frac{\lambda}{4}$	$\frac{\lambda}{2}$	$\frac{3\lambda}{4}$	λ
у	0	а	0	-a	0

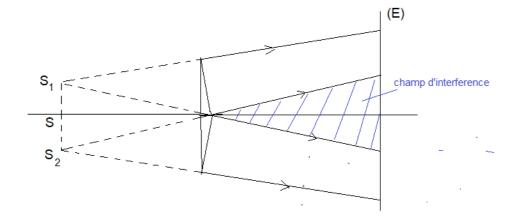
Représentation de $y_M = f(x)$

Exercice 2

On réalise une expérience d'interférence lumineuse avec un biprisme de Fresnel d'angle au sommet

 $\hat{A} = 4.10^{-3}$ rad et d'indice de réfraction n = 1,5. La source ponctuelle S se trouve à la distance d₁ = 50cm du biprisme. L'écran d'observation (E) est placé parallèlement au plan contenant les deux images virtuelles S₁ et S₂ et se trouve à la distance d₂ = 1,5m du biprisme.

La longueur d'onde de la radiation utilisée est λ= 0,5μm.

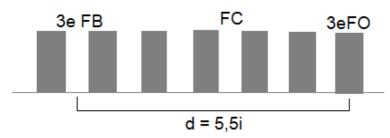

- 1. a) Faire le schéma du dispositif interférentiel,tracer la marche des rayons lumineux et préciser le champ d'interférence.
 - b) Vérifier que la distance entre les deux images virtuelles S_1 et S_2 de la source S est a = 2mm.
- 2. a) Définir et calculer l'interfrange i.
- b) La frange centrale est d'ordre zéro. Calculer la distance séparant la troisième frange brillante à gauche de la frange centrale et la troisième frange obscure à droite de la frange centrale.
- 3. Calculer la largeur du champ d'interférence observé sur l'écran (E).

Pour A2 seulement

4. Calculer le nombre de franges obscures dans le champ d'interférence.

On donne: $1 \text{mm} = 10^{-3} \text{m}$; $1 \text{µm} = 10^{-6} \text{m}$

1. a)



- b) $a = 2d1(n 1) \hat{A} = 2mm$
- 2. a) Interfrange : distance séparant deux franges consécutives de même nature

$$i = \frac{\lambda(d_1 + d_2)}{a}$$
 \rightarrow $i = 0,5mm$

b) distance de 3e frange brillante à gauche du FC et la 3e frange obscure à droite

d = 5,5i = 2,75 mm

3.
$$\frac{a}{L} = \frac{d_1}{d_2} \rightarrow L = \frac{a \cdot d_2}{d_1} \quad \text{ou} \quad L = 2d_2(n-1)\hat{A}$$

L = 6mm

4.
$$n = \frac{L}{2i} = 6$$
 \rightarrow **FO** = 2n = 12

Exercice 3

On dispose de trois cellules photoémissives. Les cathodes sont respectivement recouvertes de Césium (Cs), de potassium (K) et de Lithium (Li).

Les énergies d'extraction W₀ de ces métaux sont données dans le tableau ci-dessous :

Métal	Césium (Cs)	Potassium (K)	Lithium (Li)
W _S (eV)	1,9	2,29	2,39

- 1. a) Qu 'appelle-t-on énergie d'extraction?
 - b) Pour interpréter ce phénomène, quelle nature doit-on attribuer à la lumière ?
- 2. On éclaire successivement chaque cellule par une radiation monochromatique de longueur d'onde $\lambda = 0.60 \mu m$.
 - a) Calculer en électron-volt (eV), l'énergie transportée par un photon incident
 - b) Avec laquelle de ces trois cellules obtient-on l'effet photoélectrique ? Justifier votre réponse.
- 3. Calculer en Joule, l'énergie cinétique maximale d'un électron à la sortie de la cathode.
- 4. Calculer la tension qu'il faut appliquer entre l'anode et la cathode pour empêcher un électron d'arriver à l'anode.

Pour A₂ seulement.

5. Calculer la vitesse maximale d'un électron à la sortie de la cathode

On donne: constante de Planck $h = 6,62.10^{-34} J.s$

masse d'un électron : $m = 9,1.10^{-31} kg$

charge d'un électron : $q = -e = -1,6.10^{-19}C$

célérité de la lumière dans le vide : c = 3.108m.s⁻¹

$$1eV = 1,6.10^{-19}C$$
; $1\mu m = 10^{-6}m$

- 1. a) Énergie d'extraction : énergie minimale nécessaire pour extraire les électrons à la surface du métal.
 - b) Nature de la lumière corpusculaire
- 2. a) Énergie transportée pour un photon

$$W = \frac{hc}{\lambda} = 3,3.10^{-19} J = 2,07 \, eV$$

- b) W > W₀ on obtient l'effet photoélectrique avec le métal de Césium (Cs)
- 3. Énergie cinétique maximale : $E_C = W W_0 = 0,17eV = 0,272.10^{-19}J$
- 4. Potentiel d'arrêt : E_C : e . $|U_0|$ \rightarrow $|U_0| = \frac{E_C}{e}$ \rightarrow $|U_0| = 0,17 V$ \rightarrow $U_0 = -0,17 V$
- 5. Vitesse maximale : $E_C = \frac{1}{2} m v^2$

$$v = \sqrt{\frac{2E_C}{m}}$$
 \rightarrow **v = 2,44.** 10⁵ m/s