

P

3

6

0

5

Probabilités

1. Vocabulaire

Une expérience est dite aléatoire si elle comporte plusieurs issues (ou résultats) possibles, mais que l'on ne peut prévoir le résultat qui va se réaliser.

Chaque issue possible est appelé éventualité

L'ensemble de tous les éventualités est appelé univers, et noté en général Ω .

Le nombre d'éléments de Ω est appelé cardinal de Ω et noté card Ω ..

Chaque partie ou sous-ensemble de Ω est appelé événement, et chaque partie à un élément (ou singleton) est un événement élémentaire.

Exemple:

Lors d'un lancer de dé, le résultat que l'on considère est le numéro qui apparaît sur la face supérieur du dé.

Les éventualités sont 1, 2, 3, 4, 5, et 6.

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$Card \Omega = 6$$

Les événements élémentaires sont $\ [1]$, $\ [2]$, $\ [3]$, $\ [4]$, $\ [5]$ et $\ [6]$

A : « Obtenir un numéro pair » est un événement.

Soit Ω l'ensemble univers d'une expérience aléatoire, et A et B deux sous ensembles de Ω (deux événements).

L'événement $A \cup B$ est l'événement qui se réalise lorsqu'au moins un des événements A et B est réalisé.

L'événement $A \cap B$ est l'événement qui se réalise lorsque A et B se réalisent simultanément.

A et B sont dits incompatibles lorsqu'ils ne peuvent pas se réaliser en même temps.

L'événement contraire à A, noté \overline{A} , est l'événement qui est réalisé lorsque A ne se réalise pas.

On a donc : $A \cup \overline{A} = \Omega$ et $A \cap \overline{A} = \emptyset$.

 \emptyset est l'événement impossible (qui ne se réalise jamais)

 Ω est l'événement certain (qui se réalise toujours).

Exemple:

Dans l'exemple ci-dessus,

A: «Obtenir un numéro pair »

B: « Obtenir un numéro impair »

C: « Obtenir un numéro strictement supérieur à 6 » est un événement impossible.

D: « Obtenir le numéro 4 ou 5 »

E : « Obtenir un numéro inférieur à 8 » est un événement certain.

http://www.accesmad.org

 $A \cup B$: « Obtenir un numéro pair ou impair » : est un événement certain.

 $A \cap B$: « obtenir un numéro qui est à la fois pair et impair » est un événement impossible

 $A \cup B$: « obtenir un numéro pair ou le numéro 4 ou 5 » $A \cup B = \{2, 4, 5, 6\}$.

2. Probabilité d'un événement

On considère une expérience aléatoire dont l'ensemble univers est $\Omega = [e_1; e_{2,\dots}, e_n]$; les éventualités sont e_1, e_2 , e_n .

2.1 Définition

Définir une probabilité pour cette expérience, c'est associer à chaque événement élémentaire e_i un nombre p_i appartenant à [0;1] tels que la somme des p_i est égale à 1.

Les nombres p_i sont appelés probabilités et on note $p_i = P(e_i)$.

2.2 Principe fondamental

La probabilité d'un événement A est la somme des probabilités des événements élémentaires qui le composent

Si A est l'événement $A = \{a_1; a_2, \dots, a_k\}$, alors $p(A) = p(\{a_1\}) + p(\{a_2\}) + \dots p(\{a_k\})$.

2.3 Propriétés

- $P(\mathcal{S})=0$: la probabilité de l'événement impossible est nulle
- $P(\Omega)=1$: la probabilité de l'événement certain est égale à 1
- $0 \le P(A) \le 1$
- La somme des probabilités de tous le événements élémentaires de Ω est égale à 1.
- $P(\overline{A})=1-p(A)$
- Si A et B sont incompatibles alors $P(A \cup B) = P(A) + p(B)$
- Dans le cas général $P(A \cup B) = P(A) + p(B) p(A \cap B)$

2.4 Équiprobabilité

Lorsque chaque événement élémentaire a la même probabilité, on dit qu'il y a une équiprobabilité, ou que les événements sont équiprobables.

Lorsqu'on est dans une situation d'équiprobabilité, la probabilité p_i de chaque événement élémentaire est $p_i = \frac{1}{n}$ où n est le nombre d'éventualités.

Si A est un événement contenant m éventualités, alors $p(A) = \frac{m}{n}$.

On écrit
$$p(A) = \frac{nombre\ de\ cas\ favorables}{nobre\ de\ cas\ possibles} = \frac{card(A)}{Card(\Omega)}$$

http://www.accesmad.org

Exemples

• Dans le cas d'un dé bien équilibré, toutes les issues sont équiprobables.

Issue	1	2	3	4	5	6
Probabilité	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

• On lance un dé bien équilibré à 6 faces et on note le numéro de la face affichée. Soit A l'événement « le numéro obtenu est impair »

Le dé est bien équilibré donc nous sommes en situation d'équiprobabilité

Il y a 6 cas possibles dans l'univers et 3 cas réalisant l'événement A : 1, 3 et 5.

La probabilité d'avoir un numéro impair est donc $p(A)=3\cdot\frac{1}{6}=\frac{1}{2}$

• Dans le cas d'un jet d'une pièce bien équilibrée, on est en situation d'équiprobabilité :

Issue	Pile	Face
Probabilité	$\frac{1}{2}$	$\frac{1}{2}$