LTP ANTSIRANANA

BACC 2010 MATHS (GC-IND-AGRI)

EXERCICE 1

Soit z un nombre complexe d'argument $\frac{3\pi}{4}$ tel que $|z| = 2\sqrt{2}$

- 1). a) Ecrire z sous la forme trigonométrique.
 - b) Donner la partie réelle et la partie imaginaire de z⁴.
- c) Résoudre dans IC, l'équation : $z^2 4z + 8 = 0$
- 2). Dans le plan complexe muni d'un repère orthonormé $\mathbf{R} = (O, \vec{u}, \vec{v})$, on donne les points A, B et C d'affixes respectives $z_A = 2 2i$; $z_B = 2 + 2i$ et $z_c = -2 + 2i$.
- a) Placer les points A, B et C dans ce repère.
- b) On pose $\mathbf{Z} = \frac{z_A z_B}{z_C z_B}$. En utilisant l'argument de \mathbf{Z} et le module de \mathbf{Z} , déterminer la nature du triangle ABC.
- c) Construire dans le repère **R**, l'ensemble (Δ) des points M d'affixe z tel que $\left| \frac{z z_A}{z z_C} \right| = 1$

EXERCICE 2

Un bassin contient 10 poissons indiscernables au toucher dont 5 carpes, 2 « tilapia » et 3 poissons rouges.

- 1) On prend au hasard et simultanément 3 poissons du bassin.
- a) Calculer le nombre de cas possibles.
- b) Calculer la probabilité de chacun des événements suivants :

A: « obtenir trois carpes »

B: « obtenir exactement un « tilapia »

C: « obtenir aucun poisson rouge ».

2) On tire successivement avec remise 4 poissons du bassin.

Calculer la probabilité de chacun des évènements suivants :

D: « obtenir quatre « tilapia » ».

E : « obtenir dans l'ordre deux carpes aux deux premiers tirages et un « tilapia » au dernier tirage ».

N.B.: On donnera les résultats sous forme de fraction irréductible.

PROBLEME

PARTIE A

Soit f la fonction définie sur IR par :

 $f(x) = e^{2x} - e^x$. (**C**) désigne la courbe représentative de f dans un plan muni d'un repère orthonormé $\mathbf{R} = (O, \vec{i}, \vec{j})$ d'unité 4cm.

- 1) a) Calculer $\lim_{x\to -\infty} f(x)$. Que peut-on en conclure pour la courbe (\mathbb{C}) ?
- b) Démontrer que $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$.
- 2)a) Prouver que pour tout réel x; f'(x) peut s'écrire $f'(x) = e^x(2e^x 1)$. Où f 'est la fonction dérivée de f.
- b) Etudier le signe de f'(x).
- c) Dresser le tableau de variation de f.

Un programme pour améliorer l'éducation à Madagascar

LTP ANTSIRANANA

- 3) Justifier que la courbe (C) passe par les points $A\left(-\ln 2; -\frac{1}{4}\right)$ et $B\left(-2\ln 2; \frac{-3}{16}\right)$
- 4) Démontrer que la courbe (C) admet un point d'inflexion I dont- on précisera les coordonnées.
- 5) Déterminer une équation de la tangente (T) à la courbe (C) au point 0
- 6) Tracer (T) et (C) dans le même repère R
- 7) Calculer, en cm², l'aire A du domaine plan délimité par la courbe (\mathbb{C}), l'axe des abscisses et les droites d'équations $x = -\ln 2$ et x = 0.

On donne e \sqcup 2,7, ln2 \sqcup 0,7.

PARTIE B

- 1) Vérifier que 2e est la solution de l'équation $\ln x = 1 + \ln 2$.
- 2) Soit $(U_n)_{n \in \square}$ la suite définie par $\begin{cases} U_0 = 2 \\ \ln(U_{n+1}) = 1 + \ln(U_n) \end{cases}$.
- a) Montrer que $(U_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q=e .
- b) On pose $S_n = U_0 + U_1 + \dots + U_{n-1}$.

Démontrer que $S_5 = 2(e^4 + e^3 + e^2 + e + 1)$