LTP ANTSIRANANA

BACC 2009 MATHS (GC-IND-AGRI)

EXERCICE I

Le plan complexe (P) est rapporté à un repère orthonormé

 $\mathbf{R} = (O, \vec{u}, \vec{v})$ d'unité 1cm.

1) Résoudre dans \mathbb{C} l'équation :

$$z^2 - (6-i)z + 11 - 3i = 0.$$

2) On note A, B et C les points d'affixes respectives :

$$a = 3 + i$$
; $b = 3 - 2i$ et $c = 6 - 2i$.

a) Placer dans le repère R les points A, B et C.

b) On pose:
$$Z = \frac{a-b}{c-b}$$
.

Déterminer le module et un argument de Z.

En déduire la nature du triangle ABC.

c) Déterminer l'affixe du point D tel que le ABCD soit quadrilatère parallélogramme.

EXERCICE II

N.B.: On donnera les résultats sous forme de fraction irréductible.

Une trousse contient 2 stylos verts, 3 stylos rouges et 5 stylos bleus. Chaque stylo a la même probabilité d'être tiré.

1) On tire au hasard et simultanément 3 stylos de la trousse.

Calculer la probabilité de chacun des événements suivants :

A « tirer 3 stylos de couleurs différentes »

B « tirer au moins un stylo vert »

2) On tire successivement sans remise 3 stylos de la trousse.

a) Déterminer le nombre de cas possibles.

b) Calculer la probabilité des événements suivants :

C « tirer 3 stylos de même couleur »

D « tirer 2 stylos rouges exactement »

PROBLEME

I – Soit f la fonction définie sur]0; + ∞ [par : $f(x) = -2 + \frac{1}{x} + 2 \ln x$.

(${\bf C}$) désigne la courbe représentative de f dans un repère orthonormé ${\bf R}=\left(O,\vec{i}\,,\,\vec{j}\right)$ d'unité 2cm.

1)a) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter ce résultat.

b) Démontrer que $\lim_{x\to 0^+} f(x) = +\infty$. Interpréter ce résultat.

2)a) Démontrer que pour tout
$$x > 0$$
; $f'(x) = \frac{2x-1}{x^2}$

b) Dresser le tableau de variation de f.

- c) Démontrer que la courbe (C) admet un point d'inflexion dont on précisera les coordonnées.
- d) Déterminer une équation de la tangente (T) à la courbe (\mathbf{C}) au point A(1;-1)
- 3) Construire (T) et (C) dans R
- 4) Soit G la fonction définie sur]0; $+\infty[$ par $G(x) = (2x + 1) \ln(x) 4x$.

Un programme pour améliorer l'éducation à Madagascar

LTP ANTSIRANANA

- a) Démontrer que G est une primitive de f sur]0; $+\infty[$.
- b) Calculer en cm², l'aire du domaine plan délimité par la courbe (C), l'axe des abscisses et les droites d'équations x = 1 et x = 2.

II – Soit $(U_n)_{n \in IN}$ la suite définie par $U_{n+1} = \frac{1}{2}U_n - \frac{5}{6}$ pour tout entier naturel n et $U_0 = 2$.

- 1) Calculer U_1 et U_2 .
- 2) Soit $(V_n)_{n \in IN}$ la suite définie par

 $V_n = 3 U_n + 5$, pour tout $n \in IN$.

- a) Démontrer que $\left(V_n\right)_{n\in IN}$ est une suite géométrique dont on précisera la raison et le premier terme V_o .
- b) Exprimer V_n en fonction de n et U_n en fonction de n.
- c) Calculer $\underset{n \to +\infty}{\text{lim}} \, U_n$.
- d) On pose $S = V_o + V_1 + ... + V_{99}$. Prouver que $S = 11 \left(2 \frac{1}{2^{99}} \right)$ On donne $ln2 \approx 0.7$