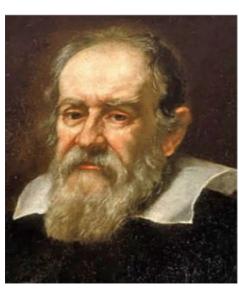




#### L'historique et l'évolution de la lunette astronomique



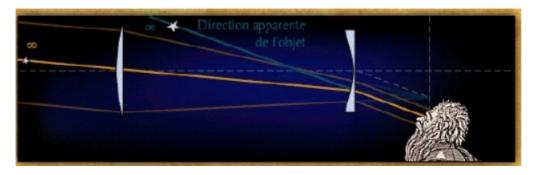

La lunette astronomique a été « inventé » par un artisan opticien hollandais : Hans Lippershey au XVIIème siècle.

#### Lippershey (1570-1619)



Lunette de Lippershey (1608)

#### Galilée (1564-1642)

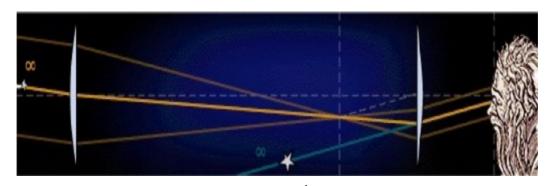



Galilée établit véritablement la lunette d'approche comme instrument d'observation astronomique en 1609.

 $\leftarrow$ 








Lunette de Galilée (1609)



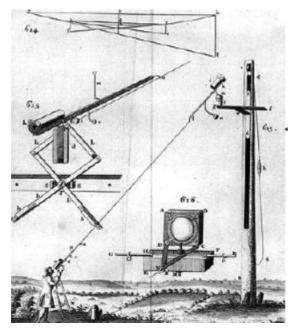
Direction apparente de l'objet

#### Kepler (1571-1630)



↑ Direction apparente de l'objet

### Hevelius (1611-1687)




Lunette de ← Hevelius (1641) 45mètres.





#### Huygens (1629-1695)



← Lunette de Huygens← 37mètres.

#### Lick (1796-1876)



Lunette de Lick (1888)← 89 cm de diamètre pour 17 m de focale.

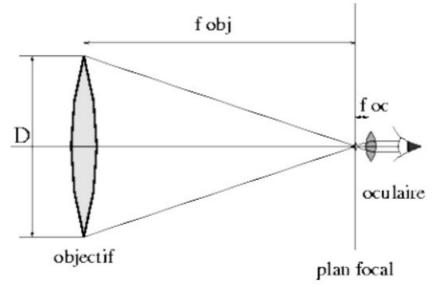




#### Yerkes (1837-1905)



Lunette de Yerkes (1897)← 1 m de diamètre et 19 m de focale.


# Composition de la lunette astronomique



L'objectif peut être assimilé à une lentille convergente. L'oculaire joue le rôle d'une loupe dans l'examen de l'image fournie par l'objectif.





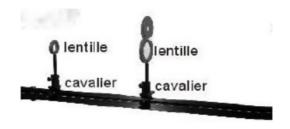


Modélisation de la lunette astronomique

#### Son rôle

Le rôle d'une lunette astronomique est de donner des images grossies d'objets lointains dont le diamètre apparent est insuffisant pour être observé à l'œil nu. La lunette astronomique sert à l'observation des astres (objets situés à l'infini)






# Activité expérimental de la lunette astronomique :

#### Matériel utilisé:

- -Un banc optique.
- -Des lentilles de vergence:





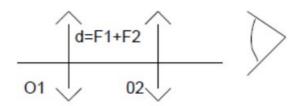




### Avant tout, il faut calculer la distance focale 1/C pour chaque lentille donc:

1/2 = 0.5 m 1/3 = 0.34 m 1/4 = 0.25 m 1/6 = 0.117 m 1/8 = 0.13 m 1/11 = 0.09 m Pour ensuite ajouter les longueurs des lentilles:

Ex: lentille +3doptrie + 11 doptrie= 0,34+0,09 = 0,43 m


Lentille de convergence: +3 dipotrie +11 dioptrie=0,43m=Bien



Lentille de convergence: +3 dioptrie +8 dioptrie=0,47m= bien



Lentille de convergence: +2 dioptrie +8 dioptrie = 0,63 = ne marche pas.



Lentille de convergence: +2 Dioptrie +11 dioptrie=0,59= excellent



