

Exercice sur les lois de Snell-Descartes

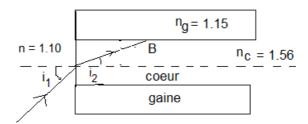
1. Exercice

- Sur le schéma, noter i₁, l'angle d'incidence et i₂ l'angle de réfraction.
- 2)- Mesurer i₁ et i₂ à l'aide d'un rapporteur.
- 3)- Calculer le rapport $\sin i_1 / \sin i_2$.
- 4)- Donner la relation existant entre sin i₁ et sin i₂.
- 5)- Sachant que le milieu 1 est de l'air, calculer l'indice de réfraction du milieu 2.
- 6)- Tracer le rayon réfléchi.

2. Exercice

Réfraction limite:

Calculer les angles de réfraction limite pour les propagations dans le sens :

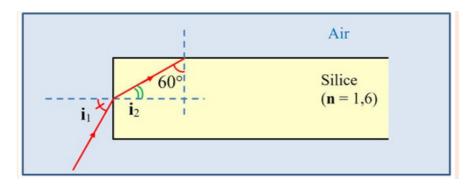

- 1)- Verre \rightarrow Air
- 2)- Verre → Eau.
- 3)- Calculer le rapport sin $i_1/\sin i_2$.

Données : $\mathbf{n}_{eau} = 1,33$; $\mathbf{n}_{verre} = 1,50$; $\mathbf{n}_{air} = 1,00$;

3. Exercice

Exemple d'application sur les lois de Descartes qui est la fibre optique, avec notamment la réflexion totale.

Ci-dessous le schéma de la fibre optique qui est constituée d'un cœur central entouré d'une gaine. Un rayon incident sous un angle i₁,dans un milieu d'indice n=1,10 arrive au cœur qui a un indice 1,56 et que la gaine a un indice n=1,15. Le rayon va être dévié et arrive au point B.


- 1. Peut-il y avoir réflexion totale en B?
- 2. Que vaut-il i_{3lim}, angle d'incidence en B.
- 3. En déduire i₁ correspondant.
- En déduire dans le cas de réflexion totale le trajet du rayon dans le cœur

4. Exercice

Rayon lumineux dans un cylindre de silice

- 1. Avec les données du document ci-dessus, calculer i₁ et i₂
- 2. Tracer la marche du rayon lumineux jusqu'à sa sortie du cylindre