

APPLICATIONS AFFINES- Exercices

Exercice 1

Dans le plan orienté rapporté à un repère orthonormal direct ($0, \vec{i}, \vec{j}$), on donne le point A de coordonnées (0; 1) et le cercle (C) de centre A et de rayon 1. Soit B un point de l'axe des abscisses, distinct de O. Soit (C') le cercle de centre B passant par A.

1. On appelle φ la mesure de l'angle $(\overrightarrow{AO}, \overrightarrow{AB})$, appartenant à l'intervalle .] - $\frac{\pi}{2}$; $\frac{\pi}{2}$ [.

Exprimer en fonction de φ l'abscisse de B et le rayon du cercle (C ').

- 2. a) Déterminer les deux homothéties qui transforment (C) en (C') : on déterminera le rapport et les coordonnées du centre de chacune de ces homothéties.
- b) Montrer que l'ensemble des centres de ces homothéties, lorsque B parcourt l'axe des abscisses (en restant distinct de O), est inclus dans une parabole que l'on demande de construire.

Exercice 2

Soient A, B, C trois points distincts et non alignés du plan (P), Soit a un réel.

On considère l'application fa qui à tout point M de (P) associe le point M' de (P) tel que

$$\overrightarrow{MM}' = a \overrightarrow{MA} + a \overrightarrow{MB} - \overrightarrow{MC}$$

- 1. Déterminer a pour que f_a soit une translation, dont on précisera le vecteur. On note a₀ la valeur obtenue.
- 2. a est différent de a₀ dans toute la suite de l'exercice.
- a) Montrer que f_a admet un seul point invariant, noté Ω_a .
- b) Déterminer et représenter l'ensemble des points Ω_a , lorsque a décrit IR $\{a_0\}$.
- 3. Montrer que, si plus a est distinct de 1, f_a est une homothétie dont on déterminera les éléments caractéristiques.

Que peut-on dire de f1?

Exercice 3

On donne deux points distincts A et B du plan affine et un réel k non nul. Soit M1 l'image de M par l'homothétie de centre A et de rapport k ; soit M' le barycentre des points B et M1 affectés respectivement des coefficients α et 1, α étant un réel distinct de -1. Soit f l'application qui à tout point M du plan affine associe M'.

- 1. Montrer que pour tout point M du plan affine on a :
- . $(\alpha+1)\overline{MM'}=(1-k)\overline{MA}+\alpha\overline{MB}$
- 2. Montrer que si $k = \alpha + 1$ alors f est une translation dont on déterminera le vecteur.

Auteur : Equipe de maths

3. Montrer que si k $\neq \alpha + 1$, il existe un unique point invariant G par f.

Montrer qu'alors f est une homothétie de centre G dont on définira le rapport.

Exercice 4

Le plan P est rapporté au repère orthonormé $(0, \vec{i}, \vec{j})$. On considère l'application affine f qui à tout point M de P, de coordonnées x et y, associe la point M' de coordonnées x' et y' données par :

$$\begin{cases} x' = x - 2y + 2 \\ y' = -2x + 4y - 1 \end{cases}$$

- 1. Déterminer l'ensemble des points invariants par f.
- 2. Montrer que l'image de P par f est une droite D.
- 3. Montrer que f = h o p, où h est une homothétie qu'on déterminera et p la projection orthogonale sur la droite D.

Exercice 5

Le plan affine E est rapporté au repère orthonormé $(0, \vec{i}, \vec{j})$.

1. On considère l'application affine f de E dans lui-même qui, à tout point M(x,y), associe le point M'(x',y') défini par :

$$\begin{cases} x' = \frac{3}{4} x + \frac{\sqrt{3}}{4} y - \frac{1}{2} \\ y' = \frac{\sqrt{3}}{4} x + \frac{1}{4} y + \frac{\sqrt{3}}{2} \end{cases}$$

- a) Montrer que, pour tout point M, le vecteur \overline{MM}' est colinéaire à un vecteur constant.
- b) Etudier l'ensemble des points invariants par f.
- c) Reconnaître la nature de l'application affine f.
- 2. Soit g l'application affine de E dans lui-même qui, au point M(x, y), associe le point M"(x",y") défini par :

$$\begin{cases} x'' = \frac{3}{4} \times + \frac{\sqrt{3}}{4} y - \frac{1}{2} + \frac{\sqrt{3}}{2} \\ y'' = \frac{\sqrt{3}}{4} \times + \frac{1}{4} y + \frac{\sqrt{3}}{2} + \frac{1}{2} \end{cases}$$

- a) Montrer que g peut s'écrire (hof) où h est une application de E dans lui-même que l'on précisera.
- b) Sans calcul, vérifier que : h o f = f o h.

Exercice 6

Dans le plan affine euclidien d'un repère orthonormé ($0, \vec{i}, \vec{j}$), on considère l'application f qui au point M de coordonnées (x, y) associe le point M' de coordonnées (x', y') telles que :

$$\begin{cases} x' = \frac{3}{4}x - \frac{1}{4}y + \frac{1}{4} \\ y' = -\frac{1}{4}x + \frac{3}{4}y + \frac{1}{4} \end{cases}$$

- 1. Montrer qu'il s'agit d'une application affine bijective. Définir son application réciproque f⁻¹.
- 2. a) Démontrer que l'ensemble des points invariants par f est une droite D0 que l'on précisera.
- b) Vérifier que le vecteur \overline{MM}' a une direction fixe et que le symétrique de M par rapport à M' appartient D0.
- c) En déduire une construction simple de M' connaissant le point M.
- 3. Soit (E) la courbe d'équation

$$5 x^2 + 5y^2 - 6xy - 10 x + 6y - 11 = 0$$

Déterminer une équation de l'image de (E) par f. Quelle est la nature de cette courbe image.

Exercice 7

(P) désigne un plan affine rapporté à un repère $(0,\vec{i},\vec{j})$. Soit $a \in \mathbb{R}$. On considère l'application affine f_a définie par :

$$\begin{array}{ll} f_a\colon\thinspace(P)\to(P) & \left\{\begin{array}{l} x'=ax+a-1\\ y'=(3a-1)x+(1-2a)y+2 \end{array}\right. \end{array}$$

- 1. Montrer qu'il existe une valeur de *a* pour laquelle fa est une homothétie, dont on précisera le centre et le rapport.
- 2. Existe-t-il a tel que fa soit involutive ? Montrer qu'alors fa est une symétrie que l'on précisera.
- 3. Déterminer avec précision fa (P) suivant les valeurs de a.

On suppose a = 0. Soit t la translation de vecteur $3\vec{j}$.

Montrer qu'il existe une projection p que l'on déterminera telle que : f0 = t o p = p o t.

Exercice 8

Soit k un réel différent de 0 et de 1. On considère trois points A, B et C, deux à deux distincts, tels que $\overrightarrow{AC} = k \overrightarrow{AB}$, et les cercles Γ_1 et Γ_2 de diamètres respectifs [AB] et [AC].

Une droite (Δ) non perpendiculaire à (AB) et distincte de (AB), passant par A, recoupe les cercles Γ_1 et Γ_2 respectivement en M et N.

- 1. a) Quelle est la position relative de droites (BM) et (CN)?
- b) Pour quelle valeur de k les droites (BN) et (CM) sont-elles parallèles ?
- 2. On suppose désormais k fixé et différent de -1. Soit P le point d'intersection des droites (BN) et (CM).
- a) Soit h l'homothétie de centre P telle que h(B) = N. Démontrer que h(M) = C.

Calculer le rapport de l'homothétie h en fonction du réel k (on pourra se servir des vecteurs \overline{BM} et . \overline{NC}).

b) Déterminer le réel α tel que : $\overrightarrow{BP} = \alpha \overrightarrow{BN}$

Quel est le lieu géométrique du point P lorsque Δ varie ?

En se plaçant dans le cas où k = 2 et où la distance AB est égale à 6 cm, donner les éléments géométriques remarquables du lieu géométrique L de P, et faire une figure soignée.

Date de version : octobre 2018 Auteur : Equipe de maths 4/4