

Électrolyse : résumé sur la transformation

Électrolyse

électrolyse	électrolyse
 ensemble des phénomènes accompagnant le passage du courant en solution. réaction redox non naturelle nécessitant un apport d'énergie sous forme d'énergie électrique 	La connaissance des potentiels redox ne permet pas, à elle seule de prévoir les réactions qui se produisent sur les électrodes.
La tension aux bornes de la cuve à électrolyse est de quelques volts par contre l'intensité du courant peut atteindre 100 000 ampères	
 à l'anode positive on observe l'oxydation soit: du métal de l'électrode, de l'eau, des ions négatifs 	 à la cathode négative on observe la réduction soit des molécules d'eau, des ions positifs.

Quantité d'électricité Q(en C ou Ah=3600 C) égale à l'intensité (A) fois la durée de fonctionnement (s) : Q= I t

L'énergie E(en J) mise en jeu est égale à la tension (V) aux bornes de la pile fois la Quantité d'électricité (C):

E= U Q

La charge d'une mole d'électrons est 96500 C

Date de version: 13/10/18