

Effet photoélectrique 1

Exercice I

- 1°) Qu'appelle-t-on:
 - a) Effet photoélectrique?
 - b) Longueur d'onde seuil d'un métal?
 - c) Énergie d'extraction d'un électron d'un métal?
- 2°) L'énergie d'extraction d'un électron d'une plaque de sodium est W₀=2,118eV.
 - a) Calculer la longueur d'onde seuil λ_0 de ce métal.
- b) On éclaire successivement la plaque par trois radiations de longueur d'onde: $\lambda_0=0,662\mu m$; $\lambda_1=0,6\mu m$; $\lambda_3=0,39\mu m$.

Les 3 radiations permettent-elles l'émission d'électrons par la cathode au sodium? Justifier votre réponse.

- 3°) Lorsque la cellule est éclairée par la radiation de longueur d'onde λ =0,39 μ m, quelle est la vitesse maximale avec laquelle les électrons quittent la cathode.
- 4°) Quelle tension U0 faut-il appliquer entre l'anode et la cathode pour qu'aucun électron n'atteigne l'anode.

On donne: -constante de Planck : h=6,62.10⁻³⁴J.s

-masse d'un électron : m=9.10⁻³¹kg

-célérité de la lumière dans le vide c=3.108m.s⁻¹

-charge d'un électron : q=-e=-1,6.10⁻¹⁹C

 $1eV = 1,6.10^{-19}J$; $1\mu m = 10^{-6}m$

Exercice II

-On dispose de trois cellules photoémissives. Les cathodes sont respectivement recouvertes de Césium(Cs); Potassium(K); Lithium(Li).

Les énergies d'extraction W0 d'un électron de ces métaux sont données par le tableau ci-dessous :

Métal	Cs	K	Li
W₀ (en eV)	1,87	2,26	2,39

1°) Qu'appelle-t-on énergie d'extraction?

- 2°) On éclaire successivement chaque cellule par une radiation monochromatique de longueur d'onde λ =0,59µm.
 - a) Calculer, en eV, l'énergie transportée par un photon.
 - b)Avec laquelle de ces cellules obtient-on l'effet photoélectrique? Justifier votre réponse;
 - c)En déduire la nature de la lumière.
 - d)Calculer, en Joule, l'énergie cinétique maximale d'un électron à la sortie de la cathode.
 - e)Qu'appelle-t-on potentiel d'arrêt? Calculer sa valeur absolue dans le cas où il y a effet photoélectrique.

On donne: $h=6,62.10^{-34}$ J.s; $c=3.10^{8}$ m.s⁻¹; $me=9.10^{-31}$ kg; $1eV=1,6.10^{-19}$ J

Exercice III

-On dispose de 3 cellules d'effet photoélectrique. Les cathodes sont respectivement recouvertes de césium, de calcium et de Zinc.

Le tableau suivant donne la fréquence seuil v_0 de ces 3 métaux.

Métal	Césium	Calcium	Zinc
v_0 (Hz)	4,545 .10 ¹⁴	6,670.10 ¹⁴	8,110.10 ¹⁴

1°) Les trois métaux sont éclairés successivement par une lumière monochromatique de

fréquence $V = 6.10^{14} Hz$.

Calculer en J et en eV, l'énergie d'un photon de cette radiation.

- a) Lequel de ces trois métaux provoque-t-il l'effet photoélectrique ? (La réponse doit être justifiée).
- b)Calculer la longueur d'onde seuil λ₀ du métal césium.
- c)Quelle nature doit-on attribuer à la lumière pour interpréter le phénomène d'effet photoélectrique ?
- 2°) Calculer, en Joule, l'énergie cinétique maximale de l'électron à la sortie de la cathode.
- 3°) Définir et calculer le potentiel d'arrêt : U₀

On donne: Constante de Planck: h= 6,62.10⁻³⁴ J.s

Charge de l'électron : $q = -e = -1,6.10^{-19}C$

Masse d'un électron : $m_e = 9,0.10^{-31} kg$

Célérité de la lumière dans le vide : $c= 3.10^8 m.s-1$

 $1\mu m = 10^{-6} m$; $1eV = 1,6.10^{-19} J$

Date de version : 13/09/2018 Auteur : Équipe Physique 3/3