



# TP: Etude du mouvement circulaire et uniforme.

# 1-Objectifs:

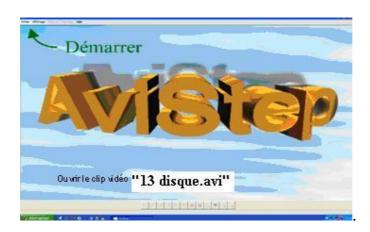
Etudier les caractéristiques du mouvement d'un disque tournant.

Evaluer sa période **T**, sa fréquence **N** (nombre de tours par seconde).

Déterminer le vecteur vitesse d'un point M situé sur la périphérie du disque et d'un point N plus proche du centre.

Calculer la vitesse angulaire ω du disque.

Déterminer les caractéristiques du vecteur accélération **a**<sub>M</sub>.


## 2-Outils utilisés:

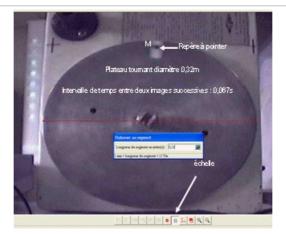
Logiciel de pointage «Avistep» avec le clip vidéo n°13:«13 disque .avi»

# 3-Déroulement de l'expérience:

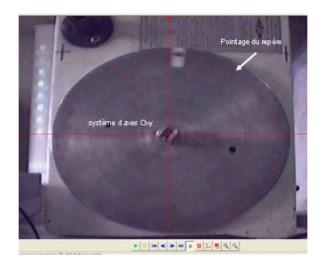


Dans le dossier vidéo, demander AVISTEP. Démarrer le logiciel et ouvrir le clip




Indiquer l'échelle du document en cotant le diamètre du disque à 0,32m comme l'indique la fig cidessous:

Date de version: Auteur: 1/4




#### http://www.accesmad.org





Faire le pointage du repère M situé à distance R du centre et choisir un système d'axes Oxy centré sur le disque :



Demander le tableau de mesures avec vitesse et accélération.

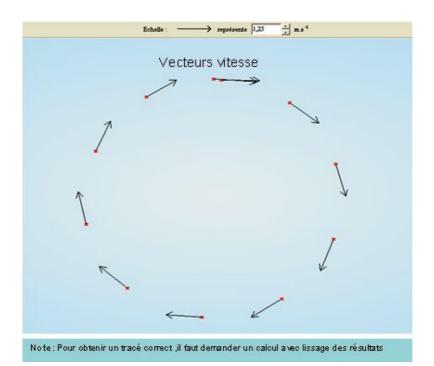
(Choisir l'option calcul «avec lissage»pour éliminer les fluctuations des résultats dues aux incertitudes de mesures.).

Demander la **construction des vecteurs vitesse et accélération**. Que peut-on dire du vecteur accélération au cours du mouvement?

Refaire les mesures pour un point N situé à la distance R/2 et comparer les valeurs de la vitesse et de la vitesse angulaire.

Date de version : Auteur : 2/4



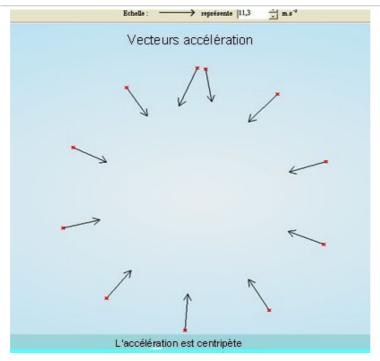



## Résultats obtenus

#### Tableau de mesures (après lissage)

|    | Numéro | Date (s) | x1 (m) | y1 (m) | vx1 (m/s) | vy1 (m/s) | v1 (m/s) | ax1 (m/s2) | ay1 (m/s2) | al (m/s2) |
|----|--------|----------|--------|--------|-----------|-----------|----------|------------|------------|-----------|
| Þ  | 1      | 0        | 0,003  | 0,138  | 1,572     | -0,092    | 1,575    | -5,755     | -12,243    | 13,528    |
|    | 2      | 0,067    | 0,092  | 0,109  | 1,074     | -0,792    | 1,334    | -9,061     | -8,908     | 12,707    |
|    | 3      | 0,133    | 0,145  | 0,032  | 0,376     | -1,275    | 1,33     | -11,636    | -3,387     | 12,119    |
|    | 4      | 0,2      | 0,143  | -0,061 | -0,488    | -1,253    | 1,345    | -11,206    | 4,191      | 11,964    |
|    | 5      | 0,267    | 0,083  | -0,135 | -1,13     | -0,723    | 1,341    | -6,502     | 10         | 11,928    |
| N. | 6      | 0,333    | -0,011 | -0,158 | -1,328    | 0,092     | 1,331    | 0,861      | 11,815     | 11,847    |
|    | 7      | 0,4      | -0,097 | -0,122 | -1,02     | 0,865     | 1,337    | 7,864      | 9,02       | 11,967    |
|    | 8      | 0,467    | -0,145 | -0,042 | -0,307    | 1,286     | 1,322    | 11,567     | 2,601      | 11,856    |
|    | 9      | 0,533    | -0,134 | 0,049  | 0,545     | 1,186     | 1,306    | 10,591     | -4,852     | 11,649    |
|    | 10     | 0,6      | -0,075 | 0,116  | 1,111     | 0,658     | 1,292    | 6,597      | -9,143     | 11,275    |
|    | 11     | 0,667    | 0,012  | 0,137  | 1,408     | -0,02     | 1,408    | 1,983      | -10,604    | 10,787    |

Vitesse du point M v<sub>M</sub>=1,3m.s<sup>-1</sup>, valeur accélération: a=11,5 m.s<sup>-2</sup> Période T=0.67s; fréquence N=1/T=1,0.67=1,5tr/s=90tr/min Vitesse angulaire w=2π/T=9,4rad.s-1 V²/R=1.3²/0.15=11.3m.s<sup>-2</sup> assez voisin de a




Date de version : Auteur : 3/4



### http://www.accesmad.org





L'accélération est centripète et sa valeur est constante et égale à  $v^2/R = \omega^2.R$ 

On constatera que la vitesse du point N est sensiblement divisée par deux alors que la vitesse angulaire est la même pour les deux points M et N..

Date de version : Auteur : 4/4