

Séquence 2 : Équations du second degré dans IR

1. Définition et vocabulaire

Une **équation du second degré**, à une inconnue x, est une équation qui peut s'écrire sous la forme $a x^2 + b x + c = 0$, où a, b et c sont des réels donnés avec $a \ne 0$.

Exemples:

- $3x^2+4x-1=0$ est une équation du second degré.
- $x^2-3\sqrt{2}x+4=0$ en est aussi.
- Mais $x^2-2x+5=(x+1)(x-2)$ n'en est pas.

2. Résolution de l'équation du second degré

Résoudre l'équation $a x^2 + b x + c = 0$, c'est trouver tous les nombres u tels que $a u^2 + b u + c = 0$. Un tel nombre est dit solution ou encore **racine de l'équation**.

2.1 Démarche

Posons $f(x)=ax^2+bx+c$ avec $a\neq 0$.

Étape 1 : Écriture de f(x) sous forme canonique.

Puisque
$$a \neq 0$$
, $f(x) = a[x^2 + \frac{b}{a}x + \frac{c}{a}] = a[(x + \frac{b}{2a})^2 - \frac{b^2}{4a^2} + \frac{c}{a}]$
$$f(x) = a[(x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a^2}]$$

Étape 2 : Résolution de f(x) = 0.

On pose $\Delta = b^2 - 4ac$. Ainsi $f(x) = a[(x + \frac{b}{2a})^2 - \frac{\Delta}{4a^2}]$. If y a trois cas à distinguer :

- Δ <0 , alors $\frac{\Delta}{4a^2}$ <0 . Le nombre entre crochet est strictement positif. L'équation f(x) = 0 n'a pas de solution.
- $\Delta=0$, alors $f(x)=a(x+\frac{b}{2a})^2$. Puisque $a\neq 0$, l'équation a une et une seule solution $x=-\frac{b}{2a}$

L'équation a deux solutions distinctes : S = { x' ; x"}.

Le nombre $\Delta=b^2-4\,a\,c$ est appelé **discriminant** de l'équation du second degré $a\,x^2+b\,x+c=0$, ou du trinôme $f(x)=a\,x^2+b\,x+c$.

2.2 Méthode

Pour résoudre $a x^2 + b x + c = 0$, on calcule $\Delta = b^2 - 4 a c$.

Δ<0	$\Delta = 0$	Δ>0
L'équation est impossible.	Il y a une racine double :	II y a 2 racines distinctes :
On écrit :	$x' = x'' = -\frac{b}{2a}$	$x' = \frac{-b - \sqrt{\Delta}}{2a}$ et $x'' = \frac{-b + \sqrt{\Delta}}{2a}$
S = Ø	S = {x'}	S= { x' ; x" }

2.3 Exercices résolus

Résoudre dans IR les équations suivantes :

$x^2 - 3x + 4 = 0$	$3x^2 - \frac{7}{2}x + \frac{49}{48} = 0$	$3x^2 - x - 4 = 0$
a = 1, b = -3, c = 4	$a=3, b=-\frac{7}{2}, c=\frac{49}{48}$	a = 3, b = - 1, c = -4
$\Delta = (-3)^2 - 4 \times 1 \times 4 = -7$	$\Delta = \left(-\frac{7}{2}\right)^2 - \frac{4 \times 3 \times 49}{48} = 0$	$\Delta = (-1)^2 - 4 \times 3 \times (-4) = 49$
Δ < 0 , pas de solution.	$x = -\frac{b}{2a} = \frac{7}{12}$	$x' = \frac{-b - \sqrt{\Delta}}{2a} = -1$ et $x'' = \frac{-b + \sqrt{\Delta}}{2a} = \frac{4}{3}$
$S = \emptyset$	$S = \{ \frac{7}{12} \}$	$S = \{ -1; \frac{4}{3} \}$