

Séquence 2 : Suites arithmétiques

1. Définition

Dire qu'une suite (Un) est **arithmétique** de raison r signifie qu'il existe un réel r tel que pour tout n :

$$U_{n+1} = U_n + r$$

Ce réel r est appelé **raison** de la suite. $r = U_{n+1} - U_n$ pour tout n

On passe d'un terme au suivant en ajoutant toujours le même nombre r.

Exemples:

- La plus naturelle des suites arithmétiques est la suite des entiers naturels de premier terme 0 et de raison r = 1.
- La suite (U_n) définie par U_n = -2n +5 est une suite arithmétique de premier terme U_0 = 5 et de raison r = -2.

2. Expression du terme général

D'après la définition, $U_1 = U_0 + r$.

Alors
$$U_2 = U_1 + r = U_0 + r + r = U_0 + 2r$$
; $U_3 = U_2 + r = U_0 + 2r = U_0 + 3r$ et $U_{n+1} = U_n + r = U_0 + n$ r.

Ainsi, pour tout n, nous avons: $U_n = U_0 + n r$.

Mais si l'indice commence par un entier p > 0, $U_p = U_0 + n r$ et $U_p = U_0 + p r$.

En retranchant membre à membre: $U_n - U_p = n r - p r$.

D'où :
$$U_{n} = U_{p} + (n - p) r$$
.

3. Somme des termes

On cherche à calculer la somme S = $U_k + U_{k+1} + U_{k+2} + ... + U_n$

On a
$$S = \frac{(n-k+1)(U_k+U_n)}{2}$$
.

4. Applications

- Une suite arithmétique (U_n) a pour raison r = -2, et, pour premier terme $U_0 = 4$.
- 1) Exprimer U_n en fonction de n.
- 2) Calculer le 8e terme et le 28e terme de cette suite.
- 3) Calculer la somme : $S = U_7 + U_8 + ... + U_{27}$

Réponse :

- 1) En utilisant la formule, $U_n = U_0 + n r$, avec r = -2 et $U_0 = 4$, on obtient $U_n = 4 2n$.
- 2) Le 8° terme et le 28° terme de cette suite correspondent à U_7 et U_{27} . En remplaçant n par 7 puis par 27, on a U_7 = 10 et U_{27} = 50.
- 3) En utilisant la formule pour k = 7 et n = 27, on a $S = \frac{(27-7+1)(-10-50)}{2}$ soit S = -630.
 - Calculer la somme S = 1 + 2 + 3 + 4 + + n.

Posons
$$U_0 = 1$$
, $U_1 = 2$, $U_2 = 3$, $U_3 = 4$, ..., $U_{n-1} = n$

$$S\!=\!U_0\!+\!U_1\!+\!U_2\!+\!U_3\!+\!\ldots\!+\!U_{n-1}\!=\!\frac{(n\!-\!1\!-\!0\!+\!1)\!(\,U_0\!+\!U_{n-1})}{2}\!=\!\frac{n(\,n\!+\!1)}{2}$$

D'où:
$$S = \frac{n(1+n)}{2}$$