

Séquence 3 : Dérivées et étude de fonctions

1. Dérivation et continuité

Si une fonction f est dérivable en x_0 , alors elle est continue en x_0 .

La réciproque est fausse.

2. Dérivée et sens de variations

2.1 Théorème (admis)

Soit f une fonction dérivable sur un intervalle I.

Si f' est positive sur I, alors f est croissante sur I.

Si f' est négative sur I, alors f est décroissante sur I.

Si f' est nulle sur I, alors f est constante sur I.

2.2 Tableau de variations

Étudier les variations d'une fonction f revient à calculer sa dérivée f' et étudier son signe.

On ajoute une ligne à ce tableau. Une ligne avec des flèches indiquant les variations de f. C'est son tableau de variations.

3. Dérivée et extremums locaux

Soit f une fonction dérivable sur un intervalle $a : b[et x_0 un réel de]a : b[...]$

Si $f'(x_0) = 0$ et f' change de signe en x_0 , alors f admet un **extremum local** en x_0 .

Si f' change de signe de - en +, c'est un **minimum local** en x_0 .

Si f' change de signe de + en -, c'est un **maximum local** en x_0 .

4. Exemples

Exemples:

- Soit f la fonction définie sur IR par $f(x) = x^2 3x + 1$
 - 1. Calculer les limites de f en $-\infty$ et en $+\infty$.
 - Calculer f' et dresser son tableau de signes.
 - 3. Calculer les images des extremums.
 - 4. Dresser le tableau de variations de f.

Solution :

1) Calcul des limites

f est une fonction polynôme. Elle a même limite que son terme du plus haut degré en l'infini.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 = +\infty \quad \text{et} \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 = +\infty \quad .$$

2) Calcul de f' et tableau de signes

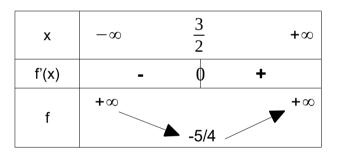
$$f'(x) = 2x-3$$
. $f'(x) = 0$ si $x = \frac{3}{2}$. On a le tableau de signe suivant :

Х	$-\infty$	<u>3</u> 2		+∞
2x+3	-	0	+	

3) Image du minimum

$$f(\frac{3}{2}) = -\frac{5}{4}$$

4) Tableau de variations



• Soit f la fonction définie sur IR par $f(x) = -x^2 + 4x - 5$

- 1. Calculer les limites de f en $-\infty$ et en $+\infty$.
- 2. Calculer f' et dresser son tableau de signes.
- 3. Calculer les images des extremums.
- 4. Dresser le tableau de variations de f.

• Solution:

1) Calcul des limites

f est une fonction polynôme. Elle a même limite que son terme du plus haut degré en l'infini.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -x^2 = -\infty \quad \text{et} \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -x^2 = -\infty$$

2) Calcul de f' et tableau de signes

$$f'(x) = -2x + 4$$
. $f'(x) = 0$ si $x = 2$

х	$-\infty$	2	+∞
2x+4	+	ø	-

3) Image du maximum local

$$f(2)=-2\times(2)^2+4(2)+5=5$$

4) Tableau de variations

х	$-\infty$	2	+∞
f'(x)	+	ø	-
f		y 5	

- (A faire en exercice) Soit f la fonction définie sur IR par $f(x) = -x^3 + 6x^2 9x + 3$.
 - 1. Calculer les limites de f en -∞ et en +∞.
 - 2. Calculer f' et dresser son tableau de signes.
 - 3. Calculer les images des extremums.
 - 4. Dresser le tableau de variations de f.