



# Séquence 2 : Homothétie et rotation

## 1. Rotation

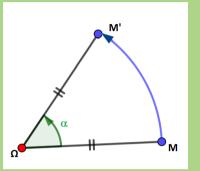
### 1.1 Définition

Soient  $\Omega$  un point et  $\alpha$  un nombre.

La **rotation de centre \Omega et d'angle \alpha**, notée  $R_{(\Omega,\alpha)}$  , associe à tout point M le point M' tels que :

$$\begin{cases}
\Omega M' = \Omega M \\
(\widehat{\Omega M}, \widehat{\Omega M'}) = \alpha
\end{cases}$$

L'image de  $\Omega$  est  $\Omega$ .



#### Remarques:

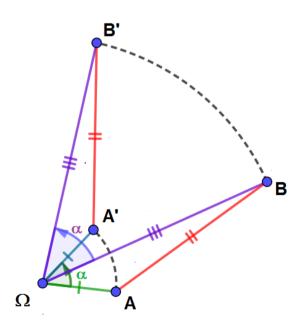
L'angle  $\alpha$ , mesuré en radian, est défini à un multiple de  $2\pi$ .

- Si  $\alpha = 2k\pi$ ,  $k \in \mathbb{Z}$  , la rotation se confond avec l'identité du plan.
- Si  $\alpha = \pi + 2k\pi$ ,  $k \in \mathbb{Z}$ , la rotation est aussi la symétrie de centre  $\Omega$ .

## 1.2 Propriétés

Une rotation d'angle non nul a un seul point invariant : son centre.

$${\rm Si} \quad {\rm A'} = R_{(\Omega,\alpha)}({\rm A}) \quad {\rm et} \quad {\rm B'} = R_{(\Omega,\alpha)}({\rm B}) \quad {\rm , \ alors \ A'B'} = {\rm AB} : {\rm toute \ rotation \ conserve \ la \ distance}.$$







# 2. Homothétie

### 2.1 Définition

Soit  $\Omega$  un point et k un nombre réel non nul.

Une **homothétie** de centre  $\Omega$  et de rapport k, notée  $H_{(\Omega,k)}$  associe à tout point M le point M' tel que :  $\overline{\Omega M}' = k \, \overline{\Omega M}$  .

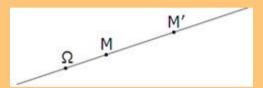
L'image de  $\Omega$  est  $\Omega$  lui-même.

## 2.2 Propriétés

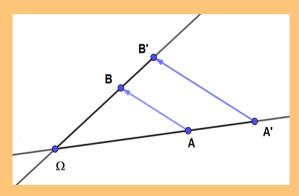
Une homothétie de rapport  $k \neq 1$  a un seul point invariant : son centre.

Si  $M'=H_{(\Omega,k)}(M)$  , alors :

- Ω, M et M' sont alignés ;
- $\Omega M' = |k| \cdot \Omega M$



 $\mathsf{Si} \ \ A' = H_{(\Omega,k)}(A) \ \ \mathsf{et} \ \ B' = H_{(\Omega,k)}(B) \ \ \mathsf{, alors} \ \ \overline{A'B'} = k \ \overline{AB} \ \ \mathsf{et} \ \mathsf{A'B'} = |\mathsf{k}|. \ \mathsf{AB}$ 



## Cas particuliers:

- Si k = 1, alors pour tout point M du plan,  $\overline{\Omega M'} = \overline{\Omega M}$  donc M' = M : une homothétie de rapport 1 est l'identité du plan.
- Si k = -1, alors pour tout point M du plan,  $\overline{\Omega M}' = -\overline{\Omega M}$ , donc  $\Omega$  est le milieu du segment [MM'].
- L'homothétie de centre  $\Omega$  et de rapport -1 est la symétrie de centre  $\Omega$ .