

Fiche méthode 2 : Suites homographiques

1. Méthode pour v_n géométrique

- On donne une suite (u_n) du type $u_{n+1} = \frac{au_n + b}{cu_n + d}$ qui n'est ni arithmétique ni géométrique.
- On introduit ensuite une deuxième suite (v_n) tel que $v_n = f(u_n)$.
- Pour démontrer que (v_n) est une suite géométrique :
 - Exprimer d'abord v_{n+1} en fonction de u_{n+1} puis de u_n ;
 - Puis calculer $\frac{V_{n+1}}{V_n}$. Ce rapport doit être égal à une constante ; c'est la raison q de (v_n) .

Rappel : le terme général d'une suite géométrique est $v_n = v_0 \times q^n$.

- Pour déterminer l'expression de u_n en fonction de n :
 - Exprimer d'abord $\mathbf{u}_{\mathbf{n}}$ en fonction de $\mathbf{v}_{\mathbf{n}}$;
 - Puis remplacer v_n par son expression

2. Exemple d'exercices

2.1 Énoncé classique

Soit la suite (u_n) définie sur IN* par $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{2u_n - 1}{2u_n + 5} & \text{pour tout } n \ge 0 \end{cases}$

- 1. Calculer u₁, u₂ et u₃.
- 2. Soit (v_n) la suite définie sur IN par $v_n = \frac{2u_n + 1}{u_n + 1}$
 - a) Montrer que (v_n) est une suite géométrique.
 - b) Calculer \boldsymbol{v}_{n} puis \boldsymbol{u}_{n} en fonction de n.

2.2 Solution

1. Calcul des termes u₁, u₂ et u₃.

$$\text{On a} \quad \mathbf{u_1} = \frac{2\,\mathbf{u_0} - 1}{2\,\times\, + \,5} = \frac{2\,\times\, 1 - \,1}{2\,\times\, 1 + \,5} = \frac{1}{7} \quad \text{,} \quad \mathbf{u_2} = \frac{2\,\mathbf{u_1} - 1}{2\,\mathbf{u_1} + \,5} = -\frac{5}{37} \quad \text{et} \quad \mathbf{u_3} = \frac{2\,\mathbf{u_2} - 1}{2\,\mathbf{u_2} + \,5} = -\frac{47}{175} \quad \text{.}$$

On constate que la suite (u_n) n'est ni arithmétique ni géométrique.

2. Étude de (v_n).

$$\qquad \text{On a} \quad v_{n+1} = \frac{2u_{n+1} + 1}{u_{n+1} + 1} = \frac{2(\frac{2u_{n+1} - 1}{2u_{n+1} + 5}) + 1}{(\frac{2u_{n+1} - 1}{2u_{n+1} + 5}) + 1} \quad \text{. Après simplification, on obtient} \quad v_{n+1} = \frac{3(2u_{n+1} + 1)}{4(u_{n+1} + 1)} = \frac{3(2u_{n+1$$

- Le rapport $\frac{v_{n+1}}{v_n} = \frac{3}{4}$ permet de conclure que (v_n) est une suite géométrique de raison $q = \frac{3}{4}$ et de premier terme $v_0 = \frac{2u_0 + 1}{u_0 + 1} = \frac{3}{2}$.
- Expression de v_n en fonction de n : on a $v_n = \frac{3}{2} \times (\frac{3}{4})^n$
- Expression de u_n en fonction de n : on a $v_n = \frac{2u_n + 1}{u_n + 1}$, ce qui implique $v_n(u_n + 1) = 2u_n + 1$ et $u_n = \frac{1 v_n}{-2 + v_n} \quad \text{. En remplaçant } v_n \text{ par son expression, on obtient : } \quad u_n = \frac{1 \frac{3}{2} \times \left(\frac{3}{4}\right)^n}{-2 + \frac{3}{2} \times \left(\frac{3}{4}\right)} \quad .$

3. Méthode pour v_n arithmétique

- On donne une suite (u_n) du type $u_{n+1} = \frac{au_n + b}{cu_n + d}$ qui n'est ni arithmétique ni géométrique.
- On introduit ensuite une deuxième suite (v_n) tel que $v_n = f(u_n)$.
- Pour démontrer que (v_n) est une suite arithmétique :
 - Exprimer d'abord v_{n+1} en fonction de u_{n+1} puis de u_n ;
 - Puis calculer $v_{n+1} v_n$. Ce rapport doit être égal à une constante ; c'est la raison r de (v_n) .

Rappel : le terme général d'une suite géométrique est $v_n = v_0 + r \times n$.

- Pour déterminer l'expression de u_n en fonction de n :
 - Exprimer d'abord u_n en fonction de v_n ;
 - Puis remplacer v_n par son expression

4. Exemple d'exercices

4.1 Énoncé classique

On définit la suite (u_n) définie sur IN par $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{5u_n - 3}{3u_n - 1} \quad \text{pour tout } n \geq 0 \end{cases}.$

- 1. Soit (v_n) la suite définie sur IN par $v_n = \frac{u_n + 1}{u_n 1}$. Montrer que (v_n) est une suite géométrique.
- 2. Calculer v_n puis u_n en fonction de n.

4.2 Solution

1. Montrons que (v_n) est une suite arithmétique.

$$\text{On a} \quad v_{n+1} = \frac{u_{n+1} + 1}{u_{n+1} - 1} = \frac{(\frac{5u_{n+1} - 3}{3u_{n+1} - 1}) + 1}{(\frac{5u_{n+1} - 3}{3u_{n+1} - 1}) - 1} \quad \text{Après simplification, on obtient} \quad v_{n+1} = \frac{4u_{n+1} - 2}{u_{n+1} - 1} = \frac{4u_{n+1} - 2}{u_{n+1} - 2} = \frac{4u_{n$$

- On a alors $v_{n+1}-v_n=\frac{4\,u_{n+1}-2}{u_{n+1}-1}-\frac{u_{n+1}+1}{u_{n+1}-1}=3$. Donc (v_n) est une suite arithmétique de raison r=3 et de premier terme $v_0=\frac{u_0+1}{u_0-1}=-1$.
- 2. Expression de v_n puis u_n en fonction de n :
- L'expression de v_n en fonction de n est $v_n = -1 + 3n = 3n 1$

Auteur : Equipe de maths

 $\text{On a} \quad v_n = \frac{u_n + 1}{u_n - 1} \text{ , ce qui implique } \quad v_n(u_n - 1) = u_n + 1 \quad \text{et} \quad u_n = \frac{v_n + 1}{v_n - 1} \text{ . En remplaçant } v_n \text{ par son expression, on obtient : } \quad u_n = \frac{3n}{3n - 2} \text{ .}$