

Série 1 : Exercices sur la fonction exponentielle

Exercice 1:

Écrire plus simplement les expressions suivantes :

a)
$$e^{\ln(5)}$$

b)
$$e^{-\ln(3)}$$

c)
$$e^{\frac{1}{2}\ln(4)}$$

d)
$$-\ln(e^{-2})$$

e)
$$e^{-3\ln(5)}$$

f)
$$\frac{1}{e^{\ln(\frac{1}{3})}}$$

g)
$$ln(\frac{1}{e^3})$$

h)
$$e^{1+ln(2)}$$

i)
$$e^{\ln(6)-\ln(3)}$$

i)
$$e^{x-\ln(x)}$$

k)
$$\frac{e^{3+\ln(5)}}{e^{4+\ln(4)}}$$

1)
$$\frac{e^{x^2-4}}{e^{x-2}}$$

m)
$$\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-\left(\frac{e^{x}-e^{-x}}{2}\right)^{2}$$

Exercice 2:

Résoudre dans IR les équations suivantes :

a)
$$e^x = 3$$

b)
$$e^{x-2} = e^{2x+1}$$

c)
$$e^{2x} + e^{x} - 2 = 0$$
 d) $e^{x^{2}} = 4$

d)
$$e^{x^2} = 4$$

e)
$$e^{x+1} = e^{-x-1}$$
 f) $e^x = -3$

f)
$$e^{x} = -3$$

g)
$$e^{2x} = 3e^{-2}$$

g)
$$e^{2x} = 3e^{-2}$$
 h) $3e^{2x} - 11e^x + 8 = 0$

i)
$$e^{6x+2} - e^{3x+1} = 0$$

j)
$$e^{\frac{1}{3}x} \times e^{-x} = e^{x^2}$$

i)
$$e^{6x+2} - e^{3x+1} = 0$$
 j) $e^{\frac{1}{3}x} \times e^{-x} = e^{x^2}$ k) $-2 - \frac{5}{e^x} + e^x = 0$ l) $e^x - 2e^{\frac{x}{2}} - 5 = 0$

$$e^{x} - 2e^{\frac{x}{2}} - 5 = 0$$

Exercice 3:

- Développer l'expression (x-1)(x+4)(x+3).
- En déduire la résolution dans IR de l'équation $e^{3x}+6x^{2x}+5e^x-12=0$. 2.

Exercice 4:

Résoudre les systèmes suivants :

a)
$$\begin{cases} e^{x} + e^{y} = 12 \\ e^{x} - e^{y} = \frac{4}{3} \end{cases}$$

b)
$$\begin{cases} 2e^{x} + 3e^{y} = 1\\ 5e^{x} - 5e^{y} = 7 \end{cases}$$

a)
$$\begin{cases} e^{x} + e^{y} = 12 \\ e^{x} - e^{y} = \frac{4}{3} \end{cases}$$
 b)
$$\begin{cases} 2e^{x} + 3e^{y} = 1 \\ 5e^{x} - 5e^{y} = 7 \end{cases}$$
 c)
$$\begin{cases} e^{-x+y} - 24e^{-x} + 4 = 0 \\ 3e^{x} - 2e^{y} = -4 \end{cases}$$
 d)
$$\begin{cases} 5e^{-x} - 3e^{-y} = 3 \\ 7e^{-x} + 6e^{-y} = 11 \end{cases}$$

d)
$$\begin{cases} 5e^{-x} - 3e^{-y} = 3 \\ 7e^{-x} + 6e^{-y} = 11 \end{cases}$$

Exercice 5:

Résoudre les inéquations suivantes :

a)
$$e^x < 3$$

b)
$$e^{-x} < 0$$

c)
$$e^{2x+1} < e^{x+2}$$

d)
$$e^{x^2-3} > 0$$

e)
$$e^{x+1}-1>0$$

f)
$$e^{3x-1} \le e^{x^2+1}$$

g)
$$e^{x}-3e^{-x}-2<0$$

Exercice 6:

Déterminer l'ensemble de définition de la fonction f :

a)
$$f_1(x) = e^{x^2-1}$$

b)
$$f_2(x) = e^{\frac{1}{x}}$$

c)
$$f_3(x) = \frac{3x}{e^x + 1}$$

d)
$$f_4(x) = \frac{5}{e^x - 1}$$

e)
$$f_5(x) = \ln(e^x - 2)$$
 f) $f_6(x) = \frac{e^x + 2}{e^x - 2}$

f)
$$f_6(x) = \frac{e^x + 2}{e^x - 3}$$

g)
$$f_7(x) = \ln(\frac{e^x - 1}{e^x + 1})$$

g)
$$f_7(x) = \ln(\frac{e^x - 1}{e^x + 1})$$
 h) $f_8(x) = \frac{e^x}{e^x - 1} - \frac{1}{\ln(e^x - 2)}$

Exercice 7:

Vérifier que, pour tout x appartenant au domaine de définition, l'expression est vérifiée :

a)
$$\frac{2e^{x}-1}{2e^{x}+5} = \frac{2-e^{-x}}{2+5e^{-x}} = 1 - \frac{6}{2e^{x}+5}$$

b)
$$\frac{4e^x}{2e^x+3} = \frac{4}{2+3e^{-x}} = 2 - \frac{6}{2e^x+3}$$

c)
$$\frac{e^{2x}}{e^x+1} = e^x - \frac{e^x}{e^x+1} = e^x - \frac{1}{1-e^{-x}}$$

Exercice 8:

Calculer les limites aux bornes du domaine de définition :

a)
$$f_1(x) = e^{-x}$$

b)
$$f_2(x)=e^{x^2}$$

a)
$$f_1(x)=e^{-x}$$
 b) $f_2(x)=e^{x^2}$ c) $f_3(x)=\frac{e^x-1}{e^x+2}$

d)
$$f_4(x) = \frac{e^x}{e^{2x} - 1}$$

e)
$$f_5(x) = xe^{x}$$

e)
$$f_5(x) = xe^x$$
 f) $f_6(x) = (x-1)e^{-x}$ g) $f_7(x) = \frac{e^x}{x}$

$$g) f_7(x) = \frac{e^x}{x}$$

Exercice 9:

Démontrer que les droites d'équation données sont asymptotes à la courbe représentative de f.

a)
$$y=x-2$$
 pour $f(x)=x-2+e^x$

b)
$$y=2x+3$$
 et $y=2x+1$ pour $f(x)=2x+1+\frac{2e^x}{e^x+3}$

Exercice 10:

Calculer la dérivée de la fonction f :

a)
$$f_1(x) = x^2 + e^x + e^2$$

b)
$$f_2(x) = \frac{1}{e^x + 1}$$

c)
$$f_3(x) = (e^x)^2$$

b)
$$f_2(x) = \frac{1}{e^x + 1}$$
 c) $f_3(x) = (e^x)^2$ d) $f_4(x) = \frac{e^x}{e^{2x} - 1}$

e)
$$f_5(x) = e^{x^2 + x}$$

f)
$$f_6(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

f)
$$f_6(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 g) $f_7(x) = \ln(\frac{e^x + 1}{e^x + 2})$

Exercice 11:

Calculer les primitives de la fonction f :

a)
$$f_1(x) = e^{2x}$$

a)
$$f_1(x)=e^{2x}$$
 b) $f_2(x)=2xe^{x^2}$

c)
$$f_3(x) = x^2 e^{x^3}$$

c)
$$f_3(x)=x^2e^{x^3}$$
 d) $f_4(x)=\frac{e^{2x}}{e^{2x}-1}$

e)
$$f_5(x) = \frac{2e^x}{\sqrt{e^{2x}+1}}$$
 f) $f_6(x) = \frac{1}{x^2}e^{\frac{2}{x}}$

f)
$$f_6(x) = \frac{1}{x^2} e^{\frac{2}{x}}$$

g)
$$f_7(x) = \frac{e^{2x} + e^x}{(e^{2x} + 2e^x + 1)^2}$$

Exercice 12:

Soit la fonction f définie par $f(x) = e^{2x} - 2e^{x}$.

- 1. Résoudre l'équation f(x) = 0
- 2. Calculer f'(x). Étudier les variations de f.
- 3. Écrire l'équation de la tangente (T) à la courbe représentative (C) de f au point d'abscisse x = ln(2).
- Tracer (T) et (C) dans un repère orthonormé. 4.

Exercice 13:

f est la fonction définie par $f(x) = \frac{e^x}{e^x + 2}$ et (C) la courbe représentant f dans un repère orthonormé (O, \vec{i}, \vec{j}) d'unité 3cm.

Quel est l'ensemble de définition de f?

Étudier la limite de f en -∞.

Montrer que, pour tout réel x, $f(x)=1-\frac{2}{x^2+2}$

En déduire la limite de f en +∞.

Précisez si (C) admet des asymptotes.

- 2. Montrer que f est dérivable en tout point de son ensemble de définition et expliciter la fonction f'. Étudier les variations de f et dresser son tableau de variations.
- Calculer f(0), $f(\ln(2))$, $f(\ln(4))$ et $f(\ln(8))$. 3.

Déterminer l'abscisse du point de C dont l'ordonnée est 8/9.

Donner une équation de la tangente D à C au point d'abscisse In(2).

Construire D et C. 4.

Exercice 14:

Soit f l'application de IR dans IR telle que $f(x)=2x+2-e^x$.

- 1. Calculer à 0,01 près f(-1), f(ln(2)) et f(3 ln(2)).
- 2. Calculer la limite de f lorsque x tend vers -∞.
- 3. Étudier les variations de f. (On admettra que $\lim_{x \to +\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = -\infty$). Vérifier que la droite d'équation y = 2x +2 est asymptote à la courbe représentative (C) de f.
- 4. Construire la courbe (C) dans un repère orthonormé (x'Ox), (y'Oy), l'unité de longueur étant 2cm.
- 5. Déterminer la primitive F de f qui s'annule pour x = 0. En déduire, en cm², l'aire de l'ensemble des points M(x,y) tels que $0 \le x \le \ln(2)$ et $0 \le y \le f(x)$.

Exercice 15:

Soit f la fonction déterminée par $f(x)=x-e^x$.

- 1. Quel est l'ensemble de définition de f?
- 2. Calculer la limite de f lorsque x tend vers $+\infty$. (On donne $\lim_{x \to -\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} \frac{f(x)}{x} = -\infty$). Vérifier que la courbe représentative (C) de f est asymptote à la droite (D) d'équation y = x.
- 3. Étudier les variations de f.
- 4. Construire (C) dans un repère orthonormé d'unité 2cm.
- 5. Calculer l'aire, en cm², de la surface comprise entre la courbe (C), la droite (D) et les droites d'équations respectives x = 0 et x = 1 (1 > 0). Quelle est la limite de cette aire quand 1 tend vers $+\infty$?

Exercice 16:

f est la fonction définie par $f(x)=3x+1-\frac{1}{e^x}$.

- 1. a) Étudier les variations de f.
 - b) (C) est la courbe représentant f dans un repère orthonormal d'unité 1cm. Montrer que la droite d'équation y = 3x + 1 est asymptote à la courbe (C).

Auteur : Équipe de Maths

- 2. a) Déterminer l'équation de la tangente à (C) au point d'abscisse 0 et tracer cette tangente.
 - b) Construire (C).