

Séquence 2 : Inéquations du second degré dans IR

1. Signe de ax+b

Pourquoi est-il utile de connaître le signe de ax+b? Factoriser une expression, c'est en fait la transformer sous la forme d'un produit où n'apparaissent que des facteurs de degré moindre. Parmi ceux-ci, on retrouve les binômes de la forme ax+b.

Par exemple, la forme factorisée de x^2 -4 est (x-2)(x+2). Connaître les signes de x-2 et x+2 permet de connaître le signe de (x-2)(x+2), d'où l'utilité de ce qui va suivre.

En utilisant les résultats de l'étude des fonctions affines en troisième, on a :

Si a est positif (a>0), c'est-à-dire a a un signe +, alors le tableau de signe du binôme ax+b est :

Si a est négatif (a<0), c'est-à-dire a a un signe -, alors le tableau de signe du binôme ax+b est :

х	- ∞	- <u>b</u>	+∞
a x + b	+	0	-

Exemples:

• Dresser le tableau de signe de 2x+5.

$$2x+5=0$$
, $2x=-5$, $x=-\frac{5}{2}$. On est dans le cas $a > 0$.

x	- ∞	$-\frac{5}{2}$	+∞
2 x + 5	-	0	+

Si x = -5, 2 (-5) + 5 = -5; et si x = 3, 2 (3) + 5 = 11. On voit que si x change, 2x+5 change de signe.

Dresser le tableau de signe de x²-4.

$$x^2 - 4 = 0$$
, si $x = -2$ ou $x = 2$.

х	- ∞	-2		2	+∞
x+2	_	0	+		+
x-2	-		-	0	+
(x-2)(x+2)	+	0	-	0	+

2. Signe de $ax^2 + bx + c$

Pour étudier le signe de ax² + bx + c, on peut utiliser sa forme canonique ou utiliser le discriminant.

2.1 Utilisation de la forme canonique à partir d'exemples

Étudier, suivant les valeurs de x, le signe de chaque trinôme :

$$T_1(x) = 2x^2 + x + 1$$
, $T_2(x) = -4x^2 + 4x - 1$ et $T_3(x) = -2x^2 + x + 3$.

■ Écrivons
$$T_1(x)$$
 sous forme canonique : $T_1(x) = 2[(x+\alpha)^2 + \beta]$ avec $\alpha = \frac{b}{2a}$ et $\beta = \frac{T_1(-\alpha)}{a}$,

Après calcul, on trouve: $T_1(x) = 2[(x+\frac{1}{4})^2 + \frac{7}{16}]$. C'est une expression positive car $(x+\frac{1}{4})^2 > 0$ pour toutes valeurs de x et la somme de deux nombres positives est positive.

Ainsi, pour tout réel x, $T_1(x) > 0$.

■ Écrivons
$$T_2(x)$$
 sous forme canonique : $T_2(x) = -4$ [($x + \alpha$)² + β] avec $\alpha = \frac{b}{2a}$ et $\beta = \frac{T_2(-\alpha)}{a}$.

Après calcul, on trouve
$$T_2(x) = -4\left(x - \frac{1}{2}\right)^2$$
 et $S =]-\infty$; $\frac{1}{2}[\cup]\frac{1}{2}$; $+\infty[$

■ Écrivons T₃(x) sous forme canonique :

$$T_3(x) = -2[x^2 - \frac{x}{2}] = -2[(x - \frac{1}{4})^2 - (\frac{1}{4})^2 - \frac{3}{2}] = -2[(x - \frac{1}{4})^2 - \frac{25}{16}]$$

On peut factoriser $T_3(x)$: après calcul $T_3(x) = -2(x+1)(x-\frac{3}{2})$ et on peut dresser son tableau de signe :

x	- ∞	-1		$\frac{3}{2}$	+∞
-2	-		-		-
x+1	_	0	+		+
$x-\frac{3}{2}$	-		-	0	+
T ₃ (x)	-	0	+	0	-

2.2 Utilisation du discriminant

Soit T(x) = ax²+bx+c. La forme canonique de T(x) est $T(x) = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right]$.

Si on pose $\Delta = b^2 - 4$ a c , on a trois cas à envisager.

- Δ < 0 , on ne peut pas factoriser T(x), T(x) a le même signe que a ;
- $\Delta = 0$, $T(x) = a[(x + \frac{b}{2a})^2]$, T(x) a même signe que (a);
- $\Delta > 0$, on calcule les racines x' et x" (solutions de T(x) = 0).
- T(x) = a(x-x')(x-x'') et T(x) a le même signe que a à l'extérieur de x' et x'', et du signe contraire à a entre x' et x''.

Pour dresser le tableau de signe de ax²+bx+c, on calcule $\Delta = b^2 - 4$ a c :

 \bullet Δ < 0 , on ne peut pas factoriser T(x), T(x) a même signe que a. On a le tableau de signe suivant :

х	- ∞	+∞
T(x)	Signe de (a)	

 $\qquad \Delta = 0 \quad \text{,} \quad T\left(x\right) = a\left[\left(x + \frac{b}{2\,a}\right)^2\right] \quad \text{T(x) a même signe que a. On a le tableau de signe suivant :}$

• $\Delta > 0$, on calcule $x' = \frac{-b - \sqrt{\Delta}}{2a}$ et $x'' = \frac{-b + \sqrt{\Delta}}{2a}$

T(x) = a(x - x')(x - x'') et on a le tableau de signe suivant (on suppose x' < x''):

х	- ∞	X'	x"	+∞
T(x)	Signe de (a)	0 Signe de (- a)	0 Signe	de (a)

3. Inéquation du second degré dans IR

3.1 Définition

Une « inéquation du second degré à une inconnue » est une inéquation qui peut se mettre sous l'une des quatre formes suivantes :

- $ax^2 + bx + c > 0$;
- $ax^2 + bx + c \ge 0$;
- ax² + bx + c < 0 ou
- $ax^2 + bx + c \le 0$

avec a ≠ 0

3.2 Résolution

Pour résoudre une telle inéquation :

- On dresse le tableau de signe de ax2 + bx +c
- On hachure les colonnes avec les signes inutiles
- On écrit l'ensemble des solutions sous forme de réunion d'intervalles

Exemples:

Résoudre dans IR les inéquations suivantes :

a)
$$-2x^2 - x + 10 > 0$$

b)
$$4x^2 + 28x + 49 > 0$$
 c) $3x^2 - 2x + 5 > 0$

c)
$$3x^2 - 2x + 5 > 0$$

Réponses :

a) Résolution de $-2x^2 - x + 10 > 0$

Dressons le tableau de signe de $T(x) = -2x^2 - x + 10$. lci, a = -2, b = -1 et c = 10.

$$\Delta = b^2-4ac = (-1)^2 - 4x(-2)x10 = 81 = 9^2$$

$$x' \ = \ \frac{-\,b - \sqrt{\Delta}}{2\,a} \ = \ \frac{-\,(-\,1) - \sqrt{81}}{2\,(-\,2)} \ = \ 2 \ \ \text{et} \quad x'' \ = \ \frac{-\,b + \sqrt{\Delta}}{2\,a} \ = \ \frac{-\,(-\,1) + \sqrt{81}}{2\,(-\,2)} \ = \ -\frac{5}{2}$$

х	- ∞	$-\frac{5}{2}$		2	+∞
T(x)	_	0	+	0	-

L'ensemble des solutions est : $S =]-\frac{5}{2}$; 2[.

b) Résolution de $4x^2 + 28x + 49 > 0$

Ici, a = 4, b = 28 et c = 49. Après calcul, on trouve $\Delta = 0$.

 $T(x)=(2x+7)^2=2(x+\frac{7}{2})^2$. T(x) a même signe que a qui est positif :

$$S=]-\infty;-\frac{7}{2}[\cup]-\frac{7}{2};+\infty[\quad.$$

c) Résolution de $3x^2 - 2x + 5 > 0$

Après calcul, on trouve Δ = -56. Δ < 0. T(x) est du signe de a qui est positif :

$$S=]-\infty;+\infty[$$
 .