

Série 1 : Exercices sur le logarithme népérien

Exercice 1:

Exprimer en fonction de ln(2) et de ln(3) les nombres suivants :

b)
$$\frac{1}{2}\ln(16)$$
 c) $\ln(\frac{1}{2})$ d) $\frac{1}{2}\ln(\frac{1}{4})$ e) $\ln(\frac{1}{81})$

c)
$$\ln\left(\frac{1}{2}\right)$$

d)
$$\frac{1}{2} \ln(\frac{1}{4})$$

e)
$$\ln(\frac{1}{81})$$

f)
$$\ln(12)$$
 g) $\ln(36)$

h)
$$\ln(36) - 2\ln(3)$$

i)
$$\ln[(-4)^2]$$

Exercice 2:

Comparer les deux nombres suivants :

a)
$$(\ln(8){-}\ln(3))$$
 et $(\ln(11){-}\ln(9))$

b)
$$(3\ln(5))$$
 et $(2\ln(11))$

c)
$$(\ln(7) - \ln(\frac{9}{21}))$$
 et $(2\ln(5) - \ln(10))$

Exercice 3:

Les nombres a, b et c sont des réels positifs. Simplifier les expressions suivants :

a)
$$A = \ln(\frac{a}{b}) + \ln(\frac{b}{c})$$

a)
$$A = \ln(\frac{a}{b}) + \ln(\frac{b}{c})$$
 b) $B = \ln(\frac{a}{b}) - \ln(\frac{c}{b}) - \ln(\frac{a}{c})$

c)
$$C = \ln(a^2) + \ln(\frac{b}{a})$$

c)
$$C=\ln(a^2)+\ln(\frac{b}{a})$$
 d) $C=\ln(ab)+\ln(\frac{b}{a})$

Exercice 4:

Calculer f(e), $f(\frac{1}{x})$, $f(\sqrt{2})$ et f(1) pour les fonctions suivantes :

a)
$$f_1(x) = (\ln x)^2 + \ln (x)^2$$

a)
$$f_1(x) = (\ln x)^2 + \ln(x)$$
 b) $f_2(x) = \ln(x^2) - (\ln x)^2$ c) $f_3(x) = \ln(2x) - (\ln x)^2$

c)
$$f_3(x) = \ln(2x) - (\ln x)^2$$

d)
$$f_4(x)=x-\ln(x)$$

d)
$$f_4(x) = x - \ln(x)$$
 e) $f_5(x) = \frac{x+1}{2 + \ln(x)}$ f) $f_6(x) = \frac{\ln(x)}{\ln(x) - 3}$

$$f) \quad f_6(x) = \frac{\ln(x)}{\ln(x) - 3}$$

Exercice 5:

Déterminer le domaine de définition des fonctions suivantes :

a)
$$f_1(x) = \ln(\frac{1}{x})$$

b)
$$f_2(x) = \ln(x^2)$$

b)
$$f_2(x) = \ln(x^2)$$
 c) $f_3(x) = \ln(-x^2 + 3x)$

d)
$$f_4(x) = \frac{1}{x} + \ln(x)$$
 e) $f_5(x) = \ln|x^2 - 4|$ f) $f_6(x) = \ln(x^2 - 4)$

e)
$$f_5(x) = \ln|x^2 - 4|$$

f)
$$f_6(x) = \ln(x^2 - 4)$$

g)
$$f_7(x) = \ln(x-2) + \ln(x+2)$$
 h) $f_8(x) = \frac{1}{1 + \ln(x)}$ i) $f_9(x) = \frac{1}{\ln(x)}$

h)
$$f_8(x) = \frac{1}{1 + \ln(x)}$$

$$i) \quad f_9(x) = \frac{1}{\ln(x)}$$

$$j) \quad f_{10}(x) = \frac{\ln(x)}{x}$$

k)
$$f_{11}(x) = \ln(\frac{x^2 - 2x}{x^2 - 1})$$
 I) $f_{12}(x) = \sqrt{1 - x} + \ln(x)$

I)
$$f_{12}(x) = \sqrt{1-x} + \ln(x)$$

Exercice 6:

Résoudre dans IR les équations suivantes :

a)
$$ln(x)=1$$

b)
$$\ln(2-x)=0$$

c)
$$\ln(x+2) = \ln(2x-3)$$

d)
$$(x+3)\ln(x+2)=0$$

e)
$$\ln(x^2-4) = \ln(1-4x)$$

d)
$$(x+3)\ln(x+2)=0$$
 e) $\ln(x^2-4)=\ln(1-4x)$ f) $\ln(x-2)+\ln(x+3)=\ln(9x-21)$

$$g) \quad \ln\left(\frac{x-1}{x+1}\right) = 3$$

g)
$$\ln(\frac{x-1}{x+1})=3$$
 h) $(\ln x)^2-3\ln(x)-2=0$ i) $\ln(x^2-2e^2)=1+\ln(x)$

i)
$$\ln(x^2-2e^2)=1+\ln(x^2-2e^2)$$

j)
$$\ln(x^2-2x)=\ln(2)+\ln(x^2-x-2)$$

Exercice 7:

On considère le polynôme P(a)=(a-1)(a+1)(2a-9).

- 1. Développer et ordonner ce polynôme
- En déduire la résolution de l'équation : $(\ln x)^3 9(\ln x)^2 2\ln x + 9 = 0$. 2.

Exercice 8:

Résoudre les inéquations suivantes :

a)
$$ln(x)>1$$

b)
$$ln(x) < 0$$

c)
$$\ln(2x+e)>1$$

d)
$$\ln(1-3x) \le 0$$
 e) $\ln(\frac{1}{x}) > 0$

e)
$$\ln\left(\frac{1}{x}\right) > 0$$

f)
$$\ln(2x+1) \ge \ln(x+2)$$

g)
$$\ln(3x+2) > \ln(x-1)$$

h)
$$(x-1)\ln(x) < 0$$

$$i) \quad \frac{x-2}{\ln(x)} \le 0$$

$$\text{g)} \quad \ln(3\,x+2) > \ln(x-1) \qquad \text{h)} \quad (x-1)\ln(x) < 0 \qquad \text{i)} \quad \frac{x-2}{\ln(x)} \leq 0 \qquad \text{j)} \quad (\ln x)^2 - 3\ln(x) + 2 \leq 0$$

Exercice 9:

Résoudre les systèmes d'équations suivantes :

a)
$$\begin{cases} 3x + 2y = 23 \\ \ln(x) + \ln(y) = \ln(7) \end{cases}$$

b)
$$\begin{cases} \ln(x y) = 7 \\ \ln(\frac{x}{y}) = 1 \end{cases}$$

Exercice 10:

Calculer les limites aux bornes de l'ensemble de définition des fonctions suivantes :

a)
$$f_1(x) = \ln(2-x)$$

a)
$$f_1(x) = \ln(2-x)$$
 b) $f_2(x) = (x-3)\ln(3-x)$ c) $f_3(x) = \ln(x^2-3x+2)$

c)
$$f_3(x) = \ln(x^2 - 3x + 2)$$

$$d) \quad f_4(x) = \frac{1}{\ln(x)}$$

d)
$$f_4(x) = \frac{1}{\ln(x)}$$
 e) $f_5(x) = \ln(\frac{2x+3}{x-1})$ f) $f_6(x) = \frac{2}{\ln(x)-1}$

f)
$$f_6(x) = \frac{2}{\ln(x) - 1}$$

g)
$$f_7(x) = x \ln(x)$$

h)
$$f_8(x) = -(\ln x)^2 + 2\ln(x) + 3$$

Exercice 11:

Montrer que la droite donnée est asymptote à la courbe représentative de la fonction correspondante.

a)
$$f_1(x)=2x-1+\frac{\ln(x)}{x}$$
, $y_1=2x-1$

$$y_1 = 2x - 1$$

b)
$$f_2(x)=x+\ln(\frac{ex}{x+1})$$
 , $y_2=x+1$

$$y_2 = x + 1$$

c)
$$f_3(x) = -x + 2 + \ln(\frac{2x+1}{x+2})$$
, $y_3 = -x + 2 + \ln(2)$

$$y_3 = -x + 2 + \ln(2)$$

Exercice 12:

Calculer la dérivée des fonctions suivantes :

a)
$$f_1(x) = \ln(x^2 + 2x + 2)$$

a)
$$f_1(x) = \ln(x^2 + 2x + 2)$$
 b) $f_2(x) = \frac{x \ln(x) + 1}{x - 1}$ c) $f_3(x) = x \ln(x)$

c)
$$f_3(x) = x \ln(x)$$

d)
$$f_4(x)=\ln[(x-1)^2]$$

e)
$$f_5(x) = x^2 + \frac{\ln(x)}{x}$$

d)
$$f_4(x) = \ln[(x-1)^2]$$
 e) $f_5(x) = x^2 + \frac{\ln(x)}{x}$ f) $f_6(x) = (x^2 - x) \ln(\frac{1}{x})$

Exercice 13:

Calculer les primitives des fonctions suivantes :

a)
$$f_1(x) = \frac{2}{x}$$

b)
$$f_2(x) = \frac{2}{x+1} - \frac{1}{x-2}$$
 c) $f_3(x) = \frac{3}{x-2}$

c)
$$f_3(x) = \frac{3}{x-2}$$

d)
$$f_4(x) = \frac{1}{x^2 - 1}$$

e)
$$f_5(x) = \frac{x^2 + 3x - 1}{x^2}$$

e)
$$f_5(x) = \frac{x^2 + 3x - 1}{x^2}$$
 f) $f_6(x) = \frac{x}{(x-1)(x+3)}$

g)
$$f_7(x) = \frac{2x+1}{x^2+x+1}$$

Exercice 14:

Soit f la fonction de la variable réelle x définie par $f(x) = \frac{3 - \ln(x)}{1 + \ln(x)}$

- 1. Quel est l'ensemble de définition de f?
- 2. Calculer f(e3).
- 3. Résoudre l'équation f(x) = 2.
- 4. Calculer la dérivée de f et étudier le signe de cette dérivée.

Exercice 15:

Soit f la fonction définie par $f(x) = \ln(\frac{x+1}{x+2}) + \ln(\frac{x+2}{x-1})$

- 1. Quel est l'ensemble de définition de f?
- 2. Pour quelles valeurs de x a-t-on f(x) = 0?
- Calculer la dérivée de f.

Exercice 16:

On considère la fonction f définie par $f(x)=1+\ln(\frac{x}{e^2})$

- 1. Étudier la fonction f.
- 2. Calculer la dérivée de la fonction F définie par $F(x) = x \ln(\frac{x}{e^2}) x$
- 3. On appelle (C) la courbe représentative de f. Calculer l'aire du domaine compris entre la courbe (C), l'axe x'Ox et les droites d'équations x = e et $x = e^2$.

Exercice 17:

- 1. Étudier la fonction f définie par $f(x)=2x-\ln(x)$.
- 2. Tracer la courbe représentative (C) de f dans un repère orthonormé.
- 3. Calculer la dérivée de la fonction g définie pour tout x > 0 par $g(x) = x x \ln(x)$. En déduire une primitive de f sur $]0;+\infty[$.
- 4. Calculer alors l'aire de la portion du plan délimitée par la courbe (C), l'axe x'Ox et les droite d'équations respectives x =1 et x= 4 (on donne ln(2) = 0,69).

Exercice 18:

On considère la fonction qui, au nombre réel x (x > 0), associe $f(x)=(2+\ln(x))\ln(x)$.

- 1. Étudier les variations de f et tracer sa courbe représentative dans un repère $(O; \vec{i}, \vec{j})$ avec $\|\vec{i}\| = 2 \text{cm}$ et $\|\vec{j}\| = 4 \text{cm}$
- 2. Former les équations des tangentes à la courbe aux points d'abscisses x = 1 et $x = e^2$.
- 3. Calculer la dérivée de la fonction g définie par $g(x)=x(\ln x)^2$
- 4. Calculer l'aire du domaine limité par l'axe Ox et l'arc de la courbe représentative de f correspondant aux f(x) positifs.

Exercice 19:

On considère la fonction f définie par $f(x) = \frac{1}{\ln(5-x)}$.

- 1. Résoudre l'équation ln(5-x)=0.
- 2. Quel est l'ensemble de définition D de f?
- 3. Calculer les limites de f aux bornes de D.
- 4. Calculer l'expression de la dérivée de f.
- 5. Donner le tableau de variation de f.
- 6. Construire la courbe C représentant f dans un repère orthonormé (unité :2cm).

Exercice 20:

f est la fonction définie sur $]0;+\infty[$ par $f(x)=\frac{1}{x}-\frac{1}{\ln(x)}$.

On note C la courbe représentant f dans un repère orthonormé (O, i, j) (unité: 2cm).

- 1. Résoudre l'équation ln(x)=1.
- 2. Calculer la dérivée f' de f.

Étudier le signe de $(\ln x)$ - 2 en fonction de x.

En déduire les variations de f.

3. Déterminer la limite de f en 0.

Déterminer la limite de f en $+\infty$.

4. Dresser le tableau de variation de f et construire la courbe C en précisant les tangentes aux points d'abscisses 1, e et e².

Exercice 21:

On considère le fonction f définie par $f(x)=2\ln(1-x)-\ln(5+x)$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Étudier les variations de f.
- 3. Déterminer les coordonnées du point d'intersection de la courbe C représentant f avec l'axe des abscisses.
- 4. Donner une équation de la tangente à C au point d'abscisse -1.
- 5. Construire C et cette tangente.