

(1) Sujet de Mécanique série C 2003 (6points)

Dans ce problème $|\vec{g}|$ =10m.s⁻². Tous les calculs seront effectués à 10⁻² prés.

Un solide (S) de masse m=50g , de dimension négligeable, peut glisser sur une piste ABCD située dans un plan vertical:

- -AB est la ligne de plus grande pente d'un plan incliné d'un angle α =30° par rapport à l'horizontale; AB=1,6m.
- -BCD est le quart d'un cercle de centre I et de rayon $R \simeq 0.9 \, m$; C est situé sur la verticale passant par I.

Questions:

- 1. On néglige les frottements. Le solide (S) part du point A sans vitesse.
- a)Calculer sa vitesse en B, en C et en D. V_B=3,95m/s; V_C=4,24m/s; V_D=3,0m/s
- b)Calculer l'intensité de la force N exercée par la piste sur (S) en C et D. N_c=1,5N;N_D=0,75N
- c)Donner les caractéristiques du vecteur vitesse \overline{V}_D de (S) au point D.
- 2.On néglige la résistance de l'air. A partir du point D, (S) tombe dans le vide avec la vitesse \overrightarrow{V}_D précédente. Le point C est situé à la hauteur h=1,55m du sol horizontal.
- a)Donner l'équation cartésienne de la trajectoire du mouvement de (S) à partir du point D, dans le repère (O,x,z).
- b) Jusqu'à quelle hauteur H au-dessus du sol horizontal monte le solide (S). H=2,39m
- c) Calculer la distance OP où P est le point d'impact de (S) sur le sol. OP=1,43m
- 3. Dans cette question, la piste exerce une force de frottements f , parallèle et de sens contraire à sa vitesse à chaque instant , et d'intensité constante le long de ABCD. Partant de A sans vitesse, (S) s'arrête au point D.
- a) Établir en fonction de m,g,R et a, l'expression algébrique du travail $W_{\vec{f}}$ de la force de frottements entre les points A et D. Calculer $W_{\vec{z}}$.
- b) En déduire l'intensité de la force \vec{f} . f=0,066N

Correction détaillée sur le document (1bis)