

Série A - session 2009 : problème - corrigé

Etude de la fonction f est définie par $f(x) = -x + 3 + e^x$.

1 - Calcul de $\lim_{x \to -\infty} f(x)$

On a
$$\lim_{x\to -\infty} (-x+3) = +\infty \qquad \text{et} \quad \lim_{x\to -\infty} e^x = 0$$
 d'où
$$\lim_{x\to -\infty} f(x) = +\infty$$

2 - a) Autre expression de f(x)

En factorisant x, on a
$$f(x) = x(-1 + \frac{3}{x} + \frac{e^x}{x})$$

b) Limite de f en $+\infty$

On a
$$\lim_{x\to +\infty} x = (+\infty) \quad \text{et} \quad \lim_{x\to +\infty} (-1+\frac{3}{x}+\frac{e^x}{x}) = +\infty$$
 Par conséquent
$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} x(-1+\frac{3}{x}+\frac{e^x}{x}) = +\infty$$
 d'où
$$\lim_{x\to +\infty} f(x) = +\infty$$

c) Equation de la droite asymptote

On a
$$\lim_{X\to-\infty} f(x) = +\infty$$
 et
$$\lim_{X\to-\infty} [f(x)-(-x+3)] = \lim_{X\to-\infty} [(-x+3+e^X)-(-x+3)] = \lim_{X\to-\infty} e^X = 0$$

La droite Δ d'équation y=-x+3 est une asymptote oblique.

3 - a) Résolution de l'équation $e^{x} - 1 = 0$

$$e^{x} - 1 = 0$$
 si $e^{x} = 1$ ce qui équivaut à $x = \ln 1 = 0$

La solution est x = 0

b) Dérivée de f

On a
$$f'(x) = (-x + 3 + e^x)' = -1 + e^x$$

c) Signe de f '(x)

$$f'(x) > 0$$
 si $-1 + e^{x} > 0$ i.e. si $x > 0$
et $f'(x) < 0$ si $-1 + e^{x} < 0$ i.e. si $x < 0$

d'où le tableau de signe de f'(x)

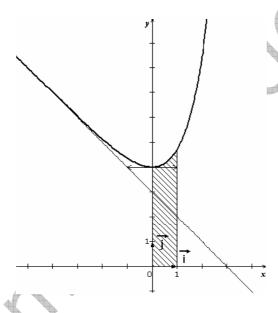
d) Tableau de variation

×	_ ∞	0		+∞
f '(×)	_	0	+	
f (x)	+∞	4 -		+60

$$f(0) = -0 + 3 + e^0 = 4$$

4- a) Equation de la tangente (T) au point d'abscisse $x_0 = 0$ On a f '(0) = 0, la tangente (T) est horizontale et d'équation y = 4

b) Courbe représentative de f. unité graphique : 1 cm



5- a) Montrons que F est une primitive de f sur R

On a
$$F'(x) = (-\frac{x^2}{2} + 3x + e^x)' = -x + 3 + e^x$$

$$F'(x) = f(x)$$

b) Calcul d'aire A

L'unité d'aire est
$$\|\vec{i}\| \cdot \|\vec{j}\| = 1 \times 1 = 1 \text{ cm}^2$$

$$A = [F(x)]_0^1.cm^2$$

$$F(1) = -\frac{1}{2} + 3 + e^1 = \frac{5}{2} + e$$
 et $F(0) = 0 + 0 + e^0 = 1$

A =
$$[F(1) - F(0)] cm^2 = (\frac{5}{2} + e - 1) cm^2$$

$$A = (\frac{3}{2} + e) cm^2$$
.