Série D - session 2003 : problème - corrigé

Soit f la fonction définie par $f(x) = 1 - \frac{1}{2}x - \frac{\ln x}{x}$

1.- Calcul de f'(x)et de f''(x)

o
$$f'(x) = 0 - \frac{1}{2} - \frac{\frac{1}{x}x - 1.\ln x}{x^2}$$

$$f'(x) = \frac{2\ln x - x^2 - 2}{2x^2}$$

$$f''(x) = \frac{(\frac{1}{x} - 2x)x^2 - 2x(2\ln x - x^2 - 2)}{2x^4}$$

$$f''(x) = \frac{-2\ln x + 3}{x^3}$$

2.a) Variations de f'

$$O_f' = \{x/x > 0 \text{ et } x \neq 0\} \text{ donc } D_f =]0; + \infty[$$

$$\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} \frac{2 \ln x - x^2 - 2}{2x^2}$$

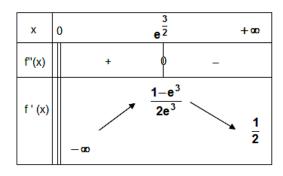
$$\lim_{x\to 0^+} 2\ln x - x^2 - 2 = -\infty \text{ et } \lim_{x\to 0} 2x^2 = 0^+$$

donc
$$\lim_{x\to 0^+} f'(x) = -\infty$$

$$\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} \frac{\ln x}{x^2} - \frac{1}{2} - \frac{1}{x^2}$$

$$\lim_{x \to +\infty} \frac{\ln x}{x^2} = 0 \lim_{x \to +\infty} -\frac{1}{2} - \frac{1}{x^2} = -\frac{1}{2} \text{ donc } \lim_{x \to +\infty} f'(x) = -\frac{1}{2}$$

o Tableau de variations



o f "(x)=0 si et seulement si
$$x = e^{\frac{3}{2}}$$

La valeur maximale de f '(x) est $\frac{1-e^3}{2e^3}$ qui est négative

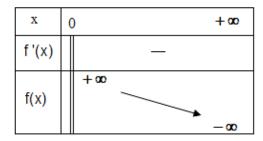
Donc f'(x) <0 qule que soit x > 0

3. Variations de f

$$\begin{array}{ll} \circ & D_f = \left\{ x/x > 0 \text{ et } x \neq 0 \right\} \text{donc } D_f = \left] 0; + \infty \right[\\ \circ & \lim_{x \to 0^+} (-\ln x) = + \infty \text{ et } \lim_{x \to 0^+} \frac{1}{x} = + \infty \\ & \text{Donc } \lim_{x \to 0^+} -\ln x. \frac{1}{x} = + \infty \\ & \text{Comme } \lim_{x \to 0} 1 - \frac{1}{2}x = 1, \ \lim_{x \to 0^+} (1 - \frac{1}{x} - \frac{\ln x}{x}) = + \infty \\ & \text{Ansi } \lim_{x \to 0^+} f(x) = + \infty \\ & \circ & \lim_{x \to + \infty} \frac{\ln x}{x} = 0, \ \lim_{x \to + \infty} (1 - \frac{1}{2}x) = - \infty \text{ donc } \lim_{x \to + \infty} (1 - \frac{1}{2}x - \frac{\ln x}{x}) = - \infty \\ & \text{Ainsi } \lim_{x \to 0^+} f(x) = - \infty \end{array}$$

D'après le résultat précédent, f '(x) <0 quel que soit x > 0, donc f est strictement décoissante sue $D_{f.}$

Tableau de variation



4.-
$$\lim_{x \to +\infty} (f(x) - (-\frac{1}{2}x + 1)) = \lim_{x \to +\infty} -\frac{\ln x}{x} = 0$$

Donc la droite d'équaiton $y = -\frac{1}{2}x + 1$ est une asymptote à la courbe de f en $+\infty$.

Etudions le signe de
$$f(x) - (-\frac{1}{2}x + 1) = -\frac{\ln x}{x}$$

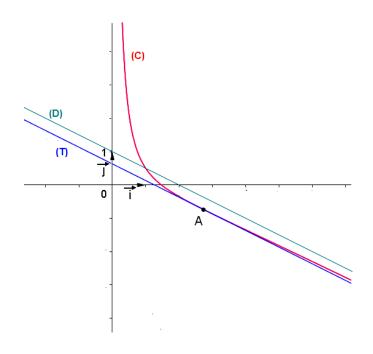
X	0		1		+ ∞
-lnx		+	•	-	
X	•	+		+	
$-\frac{\ln x}{x}$		+	•	-	

- $f(x) (-\frac{1}{2}x + 1) > 0$ si $x \in]0$; 1 [donc la courbe est au dessus de la droite sur cet intervalle
- $f(x) (-\frac{1}{2}x + 1) < 0$ si x > 1, donc la courbe est en dessous de la droite sur]1;+∞ [
- \circ La courbe et la droite se coupe en x = 1.
- 5.- La tangente en A est parallèle à (D) si elle a le même coefficient directeur que (D) , donc si $f'(x_A) = -\frac{1}{2}$.

Puisque
$$f'(x) = \frac{2\ln x - x^2 - 2}{2x^2}$$
, $f'(x) = -\frac{1}{2}$ si et seulement si $\frac{2\ln x - x^2 - 2}{2x^2} = -\frac{1}{2}$,

Ou
$$\frac{2\ln x - 2}{2x^2} = 0$$
. Ou encore $x_A = e$

C'est donc la tangente en x = e qui est parallèle à la droite (D).



7.- L'aire du domaine plan, limité par la corube, la droite (D), et les droites d'équations x = 1 et x = e est donné par $A = \left| \int_1^e (f(x) - (-\frac{1}{2}x + 1))dx \right| \cdot 1cm^2$

$$\left| \int_{1}^{e} (f(x) - (-\frac{1}{2}x + 1)) dx \right| = \left| \int_{1}^{e} -\frac{\ln x}{x} dx \right|$$
$$= \left[\frac{(\ln x)^{2}}{2} \right]_{1}^{e}$$

d'où $A = 0.5 \text{ cm}^2$

8.- On considère la fonction g définie sur $[3;+\infty[$ par $g(x)=-\frac{1}{2}x+1-f(x)$

$$g(x) = \frac{\ln x}{x}$$

a) g est le quotient de deux fonctions dérivables, donc dérivable

$$g'(x) = \frac{\frac{1}{x}x - 1.\ln x}{x^2}$$
$$g'(x) = \frac{1 - \ln x}{x^2}$$

Pour $x \ge 3$, $\ln x \ge \ln 3 > 1$. Et $x^2 \ge 3 > 0$ et 1- $\ln x < 0$. Ainsi $\frac{1 - \ln x}{x^2} < 0$ Par conséquent, g est décroissante sur $[3; +\infty[$

- b) g est décroissante sur $[3;+\infty[$ donc si $n \le x \le n+1$, $g(n+1) \le g(x) \le g(n)$ Comme ln(n+1) > 0 et (n+1) > 0 si x > 3, on a $g(n+1) = \frac{ln(n+1)}{n+1} > 0$. Ainsi $0 < g(x) \le g(n)$.
- c) On pose $U_n = \int_n^{n+1} g(x) dx$ pour tout $n \ge 3$

Comme $0 < g(x) \le g(n)$, on a $0 < \int_n^{n+1} g(x) dx \le \int_n^{n+1} g(n) dx$

$$\int_{n}^{n+1} g(n) dx = \int_{n}^{n+1} \frac{\ln n}{n} dx$$

Puisque la variable d'intégration est x, $\frac{\ln n}{n}$ est constante, donc

$$\begin{split} \int_{n}^{n+1} g(n) dx &= \frac{\ln n}{n} \int_{n}^{n+1} dx \\ &= \frac{\ln n}{n} (n+1-n) \\ \int_{n}^{n+1} g(n) dx &= \frac{\ln n}{n} \\ \text{Ainsi } 0 < U_{n} \leq \frac{\ln n}{n} \, . \end{split}$$

On a
$$\lim_{n\to +\infty} \frac{\ln n}{n} = 0$$
, donc $\lim_{n\to +\infty} (U_n) = 0$