Mathématiques

Classe Terminale A

Objectifs de la matière

Les Mathématiques doivent amener l'élève à/

- Développer des habilités intellectuelles et psychomotrices ;
- Acquérir les concepts fondamentaux dans les domaines de la numération, de la géométrie et de la mesure ;
- Maîtriser les stratégies et les automatismes de calcul ;
- Acquérir une bonne méthodologie dans la recherche des solutions à des exercices ou problèmes;
- Conjecturer, s'efforcer de prouver et contrôler des résultats obtenus ;
- Développer les qualités d'expression écrite et orale (clarté de raisonnement, soin apporté à la présentation et la rédaction);
- Acquérir une formation scientifique lui permettant de poursuivre des études et/ou de s'intégrer dans la vie active et professionnelle.

Objectifs de l'enseignement des Mathématiques au Lycée

A la sortie du Lycée, l'élève doit être capable de (d') :

- Maîtriser et appliquer les connaissances antérieurement acquises
- Faire appel à l'intuition, à l'esprit d'analyse et de synthèse,
- Maîtriser la capacité à mettre en ouvre le raisonnement déductif ainsi que les autres types de raisonnement;
- Faire des raisonnements rigoureux ;
- Avoir une attitude scientifique face à un problème.

Objectifs des Mathématiques en Terminale A

A la fin de la classe Terminale A, l'élève doit être capable de (d') :

- Résoudre des problèmes concrets faisant intervenir des équations, inéquations ou système d'équations ou d'inéquations;
- Étudier et représenter graphiquement :
 - Une fonction polynôme
 - Une fonction homographique
 - Une fonction rationnelle du type x → <u>ax2 +bx + c</u> où ad ≠ o dx + e
 - Une fonction simple associée aux fonctions logarithme et/ ou exponentielle népériens
- Utiliser la notion de primitive dans des calculs d'aires ;
- Étudier une suite numérique relativement simple ;
- Maîtriser les techniques élémentaires pour l'étude des séries statistiques à une ou à deux variables;
- Réinvestir les connaissances acquises en dénombrement dans des calculs de probabilités élémentaires

Volume horaire

52 heures par semaine

Algèbre

Équations, Inéquations, Systèmes

Durée: 3 semaines

- Résoudre un système de n équations à n inconnues réelles (n≤3) ;
- Résoudre graphiquement :
 - Une équation ou une inéquation du second degré à une inconnue réelle (avec ou sans paramètre)
 - Un système de deux inéquations linéaires à deux inconnues réelles
- Utiliser les équations, inéquations et systèmes à la résolution de problèmes de la vie courante (mise en équation, résolution, contrôle et exploitation des résultats)

resultats)		T
Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d'): Résoudre des systèmes d'équations du type: ax + by = c a'x + b'y = c' ax + by + cz = d a'x + b'y + c'z = d' a"x + b"y + c"z = d" Étudier des situations conduisant à la résolution de systèmes d'équations Déterminer la somme et le	▼Résolution numérique de systèmes d'équations (sans paramètre)	■ On traitera à titre de révision le système $\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$ et l'on insistera sur la représentation (ou interprétation) graphique du résultat. ■ Concernant le système : $\begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \end{cases}$
produit des racines (si elles existent) d'un trinôme du second degré Résoudre une équation du second degré (avec ou sans paramètre)	 Équation du second degré (avec ou sans paramètre) Inéquation du second degré 	a"x + b"y +c"z= d" on donnera la résolution par plusieurs méthodes à l'aide d'exemples uniquement dans le cas d'un système de Cramer
second degré (sans paramètre) • Mettre en équation et résoudre un problème concret du second degré		(méthode de Gauss, méthode de substitution)
 Maîtriser la résolution graphique d'un système de deux inéquations du premier degré à deux inconnues (régionnement du plan) Utiliser un système d'équations ou d'inéquations à la résolution de problèmes 	▼ Résolution graphique d'un système de deux inéquations du premier degré à deux inconnues	 On traitera cette partie en exercice, à titre de révision et on donnera un exemple d'étude numérique et graphique de problème de programmation linéaire à deux variables, d'origine

de programmation linéaire

Résoudre des équations, inéquations ou système se ramenant à :

In a = In b

ou
In a ≤ In b

▼ Résolution d'équations, inéquations faisant intervenir les fonctions logarithme népérien ou exponentielle économique ou sociale

 Cette partie sera traitée et complétée quand on aura traité les chapitres sur les fonctions logarithme népérien et exponentielle

Analyse

Fonctions dérivées

Durée: 2 semaines

- Calculer la dérivée d'une fonction composée ;
- Utiliser la dérivée à l'étude des fonctions polynômes et des fonctions du type :

$$x \longrightarrow \frac{ax^2 + bx + c}{dx + e}$$

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d'):	Contenus	Observations
 Donner les formules relatives aux dérivées usuelles Maîtriser l'utilisation de ces formules 	▼rappel des règles relatives aux dérivées usuelles	 On fera le point sur les résultats abordés en classe de Première A à propos de la dérivation d'une fonction : sens de variation, extréma, tangente
 Calculer la dérivée de la composée de deux fonctions dérivables 	▼ Dérivée d'une fonction composée	 On donnera sans démonstration la formule : (f o u)' (x)=f'[u(x)]. U'(x) et on la fera fonctionner sur des exemples numériques
 Étudier et représenter graphiquement : Des fonctions polynômes Des fonctions types :	 ▼utilisation des dérivées pour étudier sur un intervalle borné : Des fonctions polynômes Des fonctions rationnelles du type : x → ax²+bx+c dx + e (où ad ≠ o) 	 Dans les deux types de fonctions, on ne demandera à l'élève, de représenter graphiquement que les fonctions dont il pourra étudier le signe de la dérivée

Fonctions primitives

Durée: 3 semaines

- Calculer une primitive d'une fonction donnée ;
- Utiliser la notion de primitive à des calculs d'aires

Objectifs spécifiques	nitive à des calculs d'aires Contenus	Observations
l'élève doit être capable de (d') : Donner la définition d'une primitive d'une fonction donnée Calculer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées : par reconnaissance de la forme f(u). u'	▼ Définition : F est une primitive de f lorsque F'(x)= f(x) (sur un intervalle I). Notation : prim(f)	 On admettra l'existence des primitives d'une fonction continue sur un intervalle La primitivation par parties ou par changement de variable est hors programme
 Calculer la primitive d'une fonction, prenant la valeur a au point x₀ donné Calculer une primitive de la somme de deux fonctions continues, du produit d'une fonction par une constante réelle 	 ▼ Deux primitives d'une même fonction diffèrent d'une constante ▼ Opérations sur les primitives : prim (f+g) prim (kf), k€ R 	■ On proposera de nombreux exemples et exercices résolus pour apprendre à l'élève à utiliser les formules
 Utiliser les primitives d'une fonction f à des calculs d'aires 	▼application de la notion de primitives à des exercices simples de calculs d'aires (aires arithmétiques)	■ Si F est une primitive de f sur [a, b], F(b)-F(a) ne dépend pas du choix de F; on admettra que I F(b)-F(a)I représente l'aire de la portion du plan limitée par la courbe de f, l'axe des abscisses et les droites x=a, x=b, (a <b)< td=""></b)<>

Fonctions usuelles

Durée: 4 semaines

- Connaître des nouvelles fonctions : $x \longrightarrow \ln x$; $x \longrightarrow \exp(x)$
- Étudier et représenter graphiquement des fonctions simples comportant des fonctions logarithme népérien ou exponentielle ;
- Résoudre des équations, inéquations et systèmes faisant intervenir des fonctions logarithme népérien ou exponentielle

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') :	Fonction logarithme	
 Donner la définition de la fonction x → ln x étudier et représenter graphiquement la définition de la fonction x → ln x 	népérien ▼ Définition : Primitive sur] 0, + ∞ [de la fonction fonction x → 1/X S'annulant pour x= 1 Notation : Inx	 On justifiera pourquoi on est conduit à saisir intuitivement la notion de logarithme népérien; l'existence et la dérivabilité de cette fonction seront admises, mais on étudiera en détail
 Utiliser correctement et de manière performante, dans les calculs, les propriétés simples de la fonction ln x 	▼ Propriétés simples In (ab) =In a + In b In(a/b)= In a- In b In (a ^p) = p.Ina In \sqrt{a} = i/2 In a (a>0, b>0, p € Z)	la fonction : x → ln x ■ On admettra que : Lim lnx = +∞ $x \to \infty$ Lim lnx = -∞ $x \to 0$ Lim $nx = 0$ $nx \to 0$ Il existe un nombre noté e tel que ln e= 1
 Étudier et représenter graphiquement des fonctions simples associées à la fonction logarithme népérien Calculer des primitives de fonctions du type <u>u'</u> U 	▼Étude de fonctions simples associées à la fonction logarithme népérien - dérivée de ln o u - primitives de <u>u'</u> u	Si u est fonction dérivable sur un intervalle I et ne prenant pas la valeur 0 La fonction <u>u'</u> U Admet des primitives sur I, de la forme In Iu(x)I +k (k € R)

- Donner la définition de la fonction x → exp(x)
- Étudier et représenter graphiquement la définition x → exp(x)
- Utiliser correctement et de manière performante, dans les calculs, les propriétés simples de la fonction exponentielle
- Étudier et représenter graphiquement des fonctions simples associées à la fonction exponentielle népérienne
- Calculer des primitives de fonction s du type exp(u) .u'

- Résoudre une équation, une inéquation dans laquelle figurent : In [u(x)] et / ou e ^{u(x)} comme inconnues auxiliaires
- Résoudre un système dans lequel figure (In [u(x)] et In [v(y)]) et [e u(x) et e v(y)]

Fonction exponentielle népérienne

▼ définition : bijection réciproque de la fonction In Notation : exp(x)

▼ Propriétés simples

- $-\exp(a+b)=\exp(a)\cdot\exp(b)$
- $-\exp(a-b) = \frac{\exp(a)}{\exp(b)}$
- $-\exp(na) = (\exp a)^n$ (a,b \in R, n \in z) Notation e^x
- ▼ Étude de fonctions simples associées à la fonction exponentielle népérienne
 - Dérivée de exp° u
 - Primitive de exp(u). u'

Résolution d'équations, inéquations ou systèmes

Faisant intervenir les fonctions logarithme népérien ou exponentielle

- Hormis l'exemple de la fonction exponentielle, l'étude des fonctions réciproques n'est pas au programme
- On démontrera que $\lim_{x \to +\infty} e^x = +\infty$ $\lim_{x \to +\infty} e^x = 0$ $\lim_{x \to -\infty} e^x$ mais on admettra $\lim_{x \to +\infty} e^x$ $\lim_{x \to +\infty} e^x$

 Un choix judicieux devra être fait sur les fonctions u et v de manière à ce que les exercices proposés soient adaptés au niveau de la classe

Suites numériques

Durée: 3 semaines

Objectif général: l'élève doit être capable d'étudier le comportement de certaines suites numériques simples et de leurs limites

	0.000	
Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de		
(d'): • Maîtriser des suites	▼Pannala des nations	■ A l'aide de nombreux
numériques figurant au	▼Rappels des notions étudiées en classe de	
programme de la classe de	Première	exercices, on remettra au point les éléments
Première A	Tremiere	essentiels concernant les
■ Démontrer qu'une suite	- Suite arithmétique	suites arithmétiques et les
donnée est :		suites géométriques :
 Une suite arithmétique 	- Suite géométrique	- Définitions
 Une suite géométrique 		 Somme des termes
et en déterminer la		
raison et le premier		
terme		
- Reconnaître que trois	▼ Variations et limites	On entraînera également
nombres donnés sont		l'élève à reconnaître les
en progression arithmétique ou		variations de telles suites et à déterminer leurs
géométrique		limites (vue l'importance
goomoniquo		de ces deux types de
		suites)
- Calculer la limite d'une	▼ Étude du comportement	■Les parties ''étude du
suite arithmétique ou	de certaines suites et de	comportement de
d'une suite géométrique	leurs limitées :	certaines suites'' pourront
- Raisonner par	- raisonnement par récurrence	être traitées à partir
récurrence, dans des	- suites du type :	d'exemples, et
cas simples	- U _n = f(n)	éventuellement sous forme
- Étudier des suites de	- U _{n+1} = g Un	de sujet d'étude ;
types : - U _n = f(n)	▼ Approximation de réels	■On étudiera, sans faire de
- U _{n+1} =g et en calculer	par des suites rationnelles	théorie trop poussée, les
les limites	pa. add danied landinioned	suites du type
1 2 1		n → (a>o)
		où l'on distinguera les cas :
		o < a < 1 et a ≥ 1.

Statistiques

Séries statistiques à une variable

(Révisions et compléments)

Durée: 2 semaines

- Maîtriser les notions étudiées dans les classes antérieures ;
- Connaître et iutiliser d'autres notions nouvelles

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de		
(d'):		
■ Faire la distinction entre	▼ Caractères qualitatifs	■ l'étude de ces deux
caractère qualitatif et	et caractères quantitatifs	premières parties portera
caractère quantitatif et en		sur l'approfondissement
donner des représentations		des notions
graphiques		antérieurementacquises.
■ Lire et interpréter des	▼ Représentations	On pourra ainsi proposer
informations contenues	graphiques	des exercices plus
dans un mode de		complexes et variés
représentation d'une série		
statistique (représentation		
graphique ou sous forme		
de tableau)		
■Énoner la définition de :	▼ Caractéristiques	■ on pourra initier l'élève à
- Quartile	de position	l'utilisation du symbole Σ
- Décile d'une série		(sigma)pour alléger les
statistique et en donner	- Mode	écritures.
une signification	- Médiane	■ Le mode, la médiane et la
pratique	- Moyenne	moyenne d'une série
■ Déterminer les quartile et	- quartile	statistique seront données
décile d'une série		simplement à titre de
statistique		rappel, sur des exemples

Séries statistiques à deux variables

Durée: 3 semaines

Objectif général : l'élève doit être capable de comprendre et d'utiliser certaines

techniques pour l'étude de séries statistiques à deux variables

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') :		
 Dépouiller des données statistiques à deux variables et les représenter dans un tableau Étudier et interpréter un tableau de contingence Représenter une série statistique par une un nuage de points 	 ▼Étude conjointe de deux caractères d'une population : - Nuage de points - Point moyen 	■ L'apprentissage et l'introduction des nouvelles notions mentionnées dans cette partie se feront à travers des exemples bien adaptés. Tout recours à des théories formelles semblerait inutile
 Déterminer les coordonnées du point moyen d'un nuage de points Faire un ajustement linéaire graphique (ajustement manuel, utilisation des points extrêmes, méthode de 	 ▼Initiation à l'ajustement linéaire par : - Méthodes graphiques - Méthode de Mayer 	 On s'attachera à mettre en lumière la signification pratique des notions introduites et la pertinence des méthodes mises en œuvre
Mayer) Utiliser une droite d'ajustement à des problèmes simples de la vie quotidienne (évolution de prix, de revenus, de la population,)		 Aucune connaissance spécifique sur l'ajustement affine ne sera exigible de l'élève

Probabilités

Durée: 5 semaines

- Connaître et utiliser le vocabulaire probabiliste ;
- Résoudre des exercices ou problèmes simples de probabilités à l'aide de dénombrements ou d'autres méthodes
- Reconnaître le cas où s'applique l'hypothèse d'équiprobabilité

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') :		
 Connaître le vocabulaire des probabilités Décomposer un 	▼Introduction de la notion de probabilité :	 L'étude portera uniquement sur un, univers discret et de cardinal fini
événement en des événements deux à deux incompatibles	vocabulaire probabilisteOpérations sur les événements	 On devra exiger de l'élève une bonne maîtrise de l'analyse combinatoire, notamment l'utilisation des formules Anp, C np
 Calculer des probabilités élémentaires Calculer la probabilité d'une réunion d'événements disjoints, d'un événement contraire Utiliser la formule reliant les probabilités des événements A ∩ B et A U B 	 ▼ notion de probabilité : Définition d'une probabilité Propriétés élémentaires Construction d'une probabilité 	 Le vocabulaire, la notion de probabilité seront introduits à l'aide d'exemples tirés du vécu quotidien de l'élève ; on évitera toute théorie formule
 Reconnaître le cas où le calcul de probabilité de l'événement contraire résous plus facilement le cas d'un problème posé Calculer des probabilités dans le cas : De tirages successifs avec ou sans remise De tirage simultané 	▼ Cas d'équiprobabilité P= Nombre de cas favorables Nombre de cas possibles	 Les notions de probabilité conditionnelle, d'indépendance, de UUUprobabilités produites et variable aléatoire ne sont pas au programme Les événements qui entrent en jeu dans un exercice devront être choisis indépendants, autant que possible, de telle sorte que l'élève puisse appliquer la formule P (A ∩ B)= P(A). P(B) Sans ambigüité

Instructions générales

Pour la mise en œuvre du programme :

- Des réflexions devront être menées au niveau de la CPE pour définir un ordre chronologique de traitement des chapitres afin d'assurer une meilleure progression dans le processus d'apprentissage.
- Le programme est conçu pour un enseignement de 50 heures, à raison de 2 heures par semaine, de ce fait :
 - On évitera toute théorie excessive ;
 - L'enseignement devra être orienté vers l'utilisation pratique des théorèmes et propriétés
 - Bon nombre de résultats pourront être admis
 - Un choix judicieux devra s'imposer concernant les exercices d'application de façon à donner aux Mathématiques un caractère attrayant ;
- Le professeur habituera l'élève à :
 - Donner des réponses et de formulations correctes ;
 - Raisonner de façon rigoureuse ;
 - Être performant en calcul aussi bien numérique que littéral.
- Enfin, il est demandé au professeur d'assurer un bon équilibre entre les différentes parties du programme.
- Recommandation : Traiter le programme, tout le programme

Évaluations

On mettra en œuvre des formes diversifiées d'évaluation valables pour tous les chapitres étudiés :

- Exercices de contrôle des acquis, généralement courts (suivi de correction immédiate)
- Exercices d'application directe pour faire fonctionner les définitions et les propriétés et favorisant ainsi l'assimilation des notions étudiées (rédigés en groupes)
- Exercices d'entrainement pour consolider les acquis (à faire traiter à la maison);
- Exercices de synthèse pour coordination des acquisitions diverses ;
- Exercices de recherche pour faire découvrir par l'élève une méthode de résolution de problème plus complexe et pour le préparer aux divers examens de fin de cycle (à faire traiter en classe et individuellement sous forme de devoirs surveillés).

Classe Terminale C

Objectifs de la matière

Les Mathématiques doivent amener l'élève à :

- Développer des habilités intellectuelles et psychomotrices ;
- Acquérir les concepts fondamentaux dans les domaines de la numération, de la géométrie et de la mesure ;
- Maîtriser les stratégies et les automatismes de calcul ;
- Acquérir une bonne méthodologie dans la recherche des solutions à des exercices ou problèmes;
- Conjecturer, s'efforcer de prouver et contrôler des résultats obtenus ;
- Développer les qualités d'expression écrite et orale (clarté de raisonnement, soin apporté à la présentation et la rédaction);
- Acquérir une formation scientifique lui permettant de poursuivre des études et/ou de s'intégrer dans la vie active et professionnelle.

Objectifs de l'enseignement des Mathématiques au Lycée

A la sortie du Lycée, l'élève doit être capable de (d') :

- Maîtriser et appliquer les connaissances antérieurement acquises
- Faire appel à l'intuition, à l'esprit d'analyse et de synthèse,
- Maîtriser la capacité à mettre en ouvre le raisonnement déductif ainsi que les autres types de raisonnement;
- Faire des raisonnements rigoureux ;
- Avoir une attitude scientifique face à un problème.

Objectifs des Mathématiques en Terminale C

A la fin de la classe Terminale C, l'élève doit être capable de (d') :

- Mettre en œuvre des propriétés élémentaires de nombres entiers pour la résolution des problèmes d'Arithméques;
- Maîtriser les calculs sur les nombres complexes ainsi que leur utilisation en géométrie plane;
- Résoudre divers problèmes d'Analyse en mettant en œuvre les techniques et numériques, au calcul d'intégrales et aux équations différentielles ;
- Réinvstir les connaissances acquises en dénombrement dans des calculs de probabilités
- Étudier et utiliser de manière performante :
- Des transformations
- Des calculs vectoriel et analytique ;
- Des nombres complexes
- Des propriétés de configurations
- À la résolution de problèmes
- Étudier une conique

Volume horaire

8 heures par semaine

Méthodes de raisonnement

L'apprentissage du raisonnement (par récurrence, par contraposition, par l'absurde, par contre-exemple) ne devra pas faire l'objet de cous systématique, mais sera introduit et réinvesti chaque fois que les occasions se présentent. On insistera sur la pratique et sur l'utilisation de ces méthodes (plutôt que sur la théorie) à travers des exemples rencontrés en cours d'année.

On approfondira la technique du raisonnement par récurrence quand on étudiera les suites numériques

Arithmétique

Durée: 2,5 semaines

- Établir des propriétés élémentaires de nombres entiers ;
- Résoudre des exercices et / ou des problèmes d'arithmétique.

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') : • Déterminer le reste et le quotient de la division euclidienne d'un entier relatif par un autre entier non nul • Utiliser la division euclidienne pour décomposer un nombre entier naturel dans une base b donnée (2 ≤ b ≤10, existence et unicité admises) • Passer de la numération décimale à la numération binaire et réciproquement ; • Connaître et utiliser : - Les propriétés de la relation "devise" dans N* - Les conditions nécessaires et suffisantes pour que - Da □ Db ou aZ □bZ - Les propriétés du groupe (aZ, +) • Utiliser les congruences modulo n à la résolution de certains exercices tels que : - Recherche du reste de la division par n d'un entier	 Division Euclidienne dans N et dans Z Définition: □(a,b) ∈ Z xZ* ! ∃(q, r) ∈ Zx N tel que ∫ a= bq +r 0 ≤ r ≤ lbl • Numérisation décimale, Numération binaire Sous groupes de Z et congruences: - Multiples et diviseurs - Sous-groupes additifs de Z - Congruences modulo n Propriétés vis-à-vis des opérations dans Z Exemples d'utilisation 	 On donne, comme prérequis, les notions suivantes : Divisibilité dans N Signification de 'a divise b' ou 'b est multiple de a' La relation "divise" est une relation d'ordre ; Si a/b et a/c, alors a/αb +βc L'ensemble des diviseurs de a est noté D (a) ou Da L'ensemble des diviseurs communs de a et b est D (a, b), c'est –à-dire que D(a) ∩ D(b)= D (a, b) Propriété élémentaire Les propriétés faisant intervenir les opérations +, x et la relation ≥ sont celles établies pour les nombres

- naturel donné
- Établissement de critères de divisibilité
- Détermination de la classe modulo n d'un entier naturel donné...
- Effectuer des opérations dans Z/nZ
- Déterminer :
 - Le PPCM de deux ou de plusieurs nombres
 - Le PGCD de deux nombres par l'Algorithme d'Euclide
- Résoudre des problèmes utilisant :
 - Le théorème de Gauss
 - Certaines propriétés du PPCM et /ou du PGCD
- Démontrer que deux nombres sont premiers entre eux
- Reconnaître si un donné est premier ou non
- Décomposer un entier naturel en produit de facteurs premiers (existence et unicité de la décomposition admise)
- Trouver le PPCM et le PGCD de deux nombres en utilisant leur décomposition en produit de facteurs premiers
- Utiliser l'Arithmétique à la résolution d'une équation du premier degré dans Zx Z : ax + by= c

- Anneau Z/ nZ
 - Définition
 - Opérations
 - Propriétés
- PPCM et PGCD
 PPCM (a,b)=
 Min (aN ∩ bN)
 PGCD (a, b) =
 Max (Da ∩ Db)
- Proprieties élémentaires
- Recherché du PGCD par l'Algorithme d'Euclide
- Nombres premiers entre eux, Théorème de Gauss
- Nombres premiers
 - Définition
 - Propriétés élémentaires
 - Z / pZ est un corps si, est seulement si, p est un nombre premier
 - Décomposition d'un entier en produit de facteurs premiers

 Quelques exemples de résolution d'équations du premier degré dans Z xZ

- réels : comptabilité, simplification...
- Entre deux entiers consécutifs a et (a+i), il n'y a pas d'autre entier.

Propriétés plus techniques :

- Toute partie non vide de N admet un plus petit élément ;
- Toute partie non vide majorée de N admet un plus grand élément;
- Théorème d'Archimède/ $(\forall a \in N)(\forall b \in N *)$ $(\exists n \in N) \text{ tel que (bn > a)}$

- On donnera, sous forme d'activité, le théorème de Bezout suivi de quelques exemples résolus de son utilisation.
- Les notions de structures algébriques seront étudiées dans des cas précis de (ZE, +), aZ, Z/Zn

On ne fera pas de théorie générale sur la résolution , le mécanisme sera introduit à travers des résolus.

Algèbre

Ensemble C des nombres complexes

Durée: 3 semaines

- Maîtriser les règles de calcul sur les nombres complexes ;
- Utiliser les nombres complexes dans les diverses activités ;
 - Résolution d'équations du second degré
 - Résolution de problèmes de géométrie ;
 - Application à la trigonométrie.

Objectifs spécifiques	Contenus	Observations
Chjectifs spécifiques L'élève doit être capable de (d'): Effectuer toutes les opérations dans C Déterminer la partie réelle, la partie imaginaire, le conjugué d'un nombre complexe Connaître et utiliser la définition et les propriétés essentielles d'un conjugué d'un nombre complexe Calculer le module d'un nombre complexe Calculer le module d'un nombre complexe écrit sous sa forme algébrique Utiliser dans les calculs les propriétés essentielles des modules de nombres complexes Rechercher les lieux géométriques à l'aide de nombres complexes Passer de la forme algébrique à la forme trigonométrique et réciproquement	 Bijection de R² sur C Forme algébrique Opération dans C Propriétés : l'ensemble C est un corps Conjugué d'un nombre complexe Définition Propriétés Module d'un nombre complexe : IzI=√z. z̄ Interpréter géométrique d'un nombre complexe Image d'un nombre complexe D'un point, d'un vecteur Interprétation de la somme, du conjugué, du module: Forme trigonométrique d'un nombre complexe : Module et argument 	 Une construction très détaillée de l'ensemble C n'est pas souhaitable ; tout point M(a, b) du plan représente un nombre complexe z=a + ib tel que le nombre i vérifie : i² : -1 On montrera que : Les opérations dans C prolonge celles dans R. C est un corps (sans insister sur la notion de structure algébrique) On mettra en valeur les idées ont conduit à l'introduction des nombres complexes et on soulignera leur rôle en géométrie plane
	d'un nombre complexe :	
 Calculer le module et 		

l'argument d'un produit, d'un quotient , d'une puissance	 Interprétation géométrique d'un produit et du quotient 	
 Trouver les racines n-ième d'un nombre complexe(arc de solutions) déterminer l'angle de deux vecteurs dont on connaît les affixes 	de deux nombres complexes	

Utilisation des nombres complexes

Objectifs spécifiques	Contenus	Observations
L'élève doit être capable de (d'):		
 Déterminer algébriquement les racines d'un nombre complexe donné sous sa forme algébrique Résoudre dans C une équation du second degré à coefficients réels ou complexes 	 Équation du second degré Résolution algébrique Factorisation de polynôme 	
■ Connaître et utiliser la notation exponentielle dans les calculs	Complément de trigonométrie :Notation exponentielle d'un nombre complexe	 La notation exponentielle sera utiliser indépendamment de l'étude complète de la fonction exp.
 Passer de la forme trigonométrique à la notation exponentielle 	 Formules d'Euler linéarisation de polynômes trigonométriques 	 Concernant les formules d'Euler et leurs utilisations, on ne devra, en aucun cas, faire aucune théorie mais
 Connaître et utiliser la formule d'Euler dans des problèmes de linéarisation de polynômes trigonométriques 	- conversion de produits, en sommes et de sommes en produits - réduction de	on passera tout de suite à quelques exemples d'exercices permettant à l'élève de maîtriser la
 Mettre en œuvre certaines techniques pour transformer asinx + b cosx 	asinx + b cos x	technique Il sera hors de question de présenter des excès de
■ Résoudre des équations du type : asinx + b cosx = c		technicité.
 Utiliser les formules de Moivre et d'Euler pour transformer 		
des expressions trigonométriques		

Analyse

Fonctions numériques d'une variable réelle Limites et continuité

Durée: 1 semaine

- Connaître plusieurs techniques de calculs de limites et se familiariser avec leur utilisation
- Connaître et utiliser quelques propriétés des fonctions continues sur un intervalle

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d'): Calculer une limite sans utiliser des dérivées Limite en 0 et l'infini des fonctions de référence Utilisation des théorèmes de comparaison Utilisation des opérations sur les limites Si une fonction est croissante sur]a, b [(a <b) admet="" alors="" b<="" elle="" en="" est="" et="" gauche="" limite="" majorée,="" si="" td="" une="" à=""><td> Méthode de recherche de limites Opérations sur les limites Limites de référence Théorème de comparaison Limite de la composée de deux fonctions Limite d'une fonction monotone sur un intervalle ouvert] a, b [</td><td>Suivant le niveau de sa classe, on laissera au professeur le choix de démontrer ou non les théorèmes ou propriétés contenus dans ce chapitre, hormis celui de la composée de deux fonctions qu'on admettra. On devra, par contre, proposer de nombreux exercices permettant à l'élève de se familiariser avec leur</td></b)>	 Méthode de recherche de limites Opérations sur les limites Limites de référence Théorème de comparaison Limite de la composée de deux fonctions Limite d'une fonction monotone sur un intervalle ouvert] a, b [Suivant le niveau de sa classe, on laissera au professeur le choix de démontrer ou non les théorèmes ou propriétés contenus dans ce chapitre, hormis celui de la composée de deux fonctions qu'on admettra. On devra, par contre, proposer de nombreux exercices permettant à l'élève de se familiariser avec leur
 Justifier qu'une droite est asymptote à une courbe d'équation donnée Rechercher une direction asymptotique Rechercher une asymptote à une courbe d'équation donnée Étudier la position d'une courbe par rapport à une asymptote Voir la continuité ou la non continuité d'une fonction à partir d'une représentation graphique 	 Étude de branches infinies d'une courbe Direction asymptotique Asymptote Asymptote position de la courbe par rapport aux asymptotes ▼Fonction continue sur intervalle Définition 	On admettra que l'image d'un intervalle par une fonction continue est un intervalle et que l'image d'un segment est un segment

- Justifier qu'une fonction est continue sur un intervalle
- Trouver l'image d'un intervalle par une fonction à l'aide du tableau de variation de cette fonction
- Justifier à l'aide du théorème des valeurs intermédiaires qu'une équation du type f(x)= 0 admet au moins une solution sur un intervalle donné
- Connaître et utiliser quelques méthodes d'approximation des solutions d'une équation (dichotomie, encadrements successifs)
- Tracer dans repère orthonormé la courbe représentative de la fonction réciproque d'une fonction bijective
- Prolonger une fonction par continuité lorsque c'est possible

- Opérations sur les fonctions continues
- Image d'un intervalle par une fonction continue; image d'un segment
- Théorème des valeurs intermédiaires
- Réciproque d'une fonction continue et strictement monotone sur un intervalle :
 - Théorème
 - Valeur approchée d'une solution d'une équation
 - Représentation graphique
- Prolongement par continuité

 La continuité de la fonction réciproque sera également admise

On étudiera l'exemple de la fonction $x \to \sqrt[n]{x}$ où $n \in \mathbb{N}$ - $\{0,1\}$ (fonction racine n-ième)

Dérivation

Durée: 1 semaine

- Maîtriser la notion de dérivée et les techniques de calculs de la dérivée de la composée de deux fonctions;
- Utiliser la dérivée dans l'étude de variations d'une fonction

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') : • Calculer la fonction de la	▼Compléments sur la dérivation	
composée de deux fonctions dérivables • Calculer la dérivée d'une fonction du type f ^m	 Fonction dérivée d'une fonction composée : existence et formule 	 On admettra de la dérivée de la composition de deux fonctions dérivables ainsi
 Calculer la dérivée de la fonction réciproque d'une fonction bijective par application directe de la formule appropriée 	 Dérivée de la réciproque d'une fonction dérivable strictement monotone 	que la formule : fog)'= (f'og) xg' il en sera de même de la dérivée de la fonction réciproque
 Calculer des dérivées successives 	Dérivées successives :DéfinitionNotation différentielle	
 Reconnaître des situations où peut appliquer les théorèmes des inégalités des accroissements finis Encadrer f(b)-f(a), si f est dérivable, en utilisant les inégalités des accroissements finis 	 Inégalités des accroissements finis : Énoncé du théorème Exemples d'application 	 Concernant l'utilisation du théorème des inégalités des accroissements finis, on proposera uniquement des exercices qui ne comportent pas d'énorme difficulté mais qui visent plutôt à faire appliquer directement le théorème
Étudier la position d'une courbe par rapport à une	▼Étude de quelques ■ Fonctions rationnelles	■ Il n'est pas interdit de proposer en activités des
de ses (demis) tangents • Étudier, sur quelques exemples, des points d'inflexion et des points anguleux de la courbe représentative d'une fonction	 Fonctions irrationnelles Fonctions trigonométriques 	exemples de fonctions composées de deux quelconques de type figurant au programme, un des objectifs étant de rendre l'élève capable d'étudier correctement des
 Utiliser des représentations graphiques es fonctions à la résolution d'équations et d'inéquations comportant éventuellement un paramètre réel; 	 Application à la résolution d'équations et d'inéquations 	fonctions et de tracer des courbes représentatives d'une manière performante

Primitives de fonctions

Durée: 1semaine

- Connaître ce qu'est une primitive d'une fonction ;
- Calculer des primitives à partir des formules de dérivation

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') : Formuler la définition d'une primitive d'une fonction définie et continue sur un intervalle	■ Définition et propriétés : F est une primitive de f sur l signifie que F est dérivable sur l et que pour tout x de l F'(x) = f(x)	■ On admettra l'existence d'une primitive d'une fonction continue sur un intervalle
■Vérifier qu'une fonction donnée est une primitive d'une autre donnée sur un intervalle	■ Propriétés :	 On donnera des exemples de fonction non continue admettant des primitives
 Connaissant une primitive d'une fonction f sur un intervalle I 	- Théorème de l'existence d'une primitive	
 Écrire la forme générale des primitives de f sur l 	- Deux primitives, sur un même intervalle, d'une fonction différente d'une constante	
 Déterminer la primitive de f qui prend une valeur donnée en un point donné 	-Primitive d'une fonction, prenant la valeur y ₀ en un point x ₀	
■ Déterminer les primitives d'une fonction à partir des formules de dérivation (lecture inverse du tableau de dérivation)	 Calcul des primitives : Primitives des fonctions usuelles Opérations sur les primitives Primitives des fonctions du type :	 On proposera de nombreux exemples et exercices résolus pour l'élève puisse se familiariser avec l'utilisation des formules et propriétés des primitives

Fonction Logarithme Népérien Logarithme décimal

Durée: 1,5 semaine

- Connaître la fonction ln ainsi que ses propriétés essentielles ;
- Utiliser ces propriétés à la résolution de certaines équations, inéquations, systèmes et à l'étude de certaines fonctions

Objectifs spécifiques	Contenus	Observations
L'élève doit être capable de (d'): Utiliser les propriétés algébriques de la fonction In dans des calculs	▼Logarithme népérien ■ Définition, notation : In x -logarithme d'un produit Logarithme d'un quotient Logarithme d'une puissance Logarithme d'un carré	La définition logarithme népérien est définie comme étant la primitive sur]0 ; + ∞[de la fonction $\frac{1}{x}$, s'annulation pour x= 1
 Représenter graphiquement la fonction x→ ln x (ensemble de définition, limite en 0 et+∞, dérivée et sens de variation, direction asymptotique, tangentes remarquables) Calculer les quelques limites de référence et les utiliser dans la recherche d'autres limites 	 Étude de la fonction x→ ln x Limites en +∞, et en 0 Representation graphique Le nombre e - Limites de reference: lim (lnx/xn) = 0	 On étudiera en détail, une fois pour la fonction x→ ln x, avec les tangentes en (1;0) et (e;1) à sa courbe représentative Les quelques limites cicontre sont à démontrer
 Retrouver à l'aide de sa représentation graphique les propriétés essentielles de la fonction In 	$\lim_{n\to\infty} x \ln x = 0$ Fonctions construites	
■ Effectuer des calculs de logarithme décimal en utilisant la table des logarithmes	avec la fonction logarithme népérien Logarithme décimal: Définition Utilisation dans les calculs numériques	■ Le logarithme décimal d'un nombre réel à est noté : log a
 Étudier et représenter graphiquement des fonctions du type In° u 	■ Fonction du type In°u	 On étudiera en activités des exemples de fonction logarithme de base a

 Calculer des primitives des fonctions d type f/f 	▼ Calculs de certaines Primitives ■ Primitives des fonctions du type f / f	
 Résoudre des équations et inéquations se ramenant 	▼Fonction logarithme et Équations/inéquations systèmes • Équations du type : In[u(x)] = m	■On proposera de nombreux exemples et
à : lna= ln b ; in a ≤ in b Résoudre des équations et systèmes d'équations à	 Autres types d'équations et d'inéquations 	exercices pour faire maîtriser les formules et techniques de résolution
l'aide d'inconnues auxiliaires	 Systèmes d'équations (utilisation d'inconnues auxiliaires) 	

Fonction exponentielle népérienne Fonction puissance

Durée: 1,5 semaine

- Connaître la fonction exponentielle népérienne ainsi que ses propriétés essentielles
- Utiliser ces propriétés à la résolution de certaines équations, inéquations, systèmes et à l'étude de fonctions construites avec la fonction exponentielle népérienne

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de		
(d'):	 ▼Exponentielle népérienne Définition Notation exp(x) = e^x 	
 Utiliser les propriétés algébriques de la fonction exp(par analogie avec les opérations sur les puissances) 	 Propriétés algébriques : Exponentielle d'une somme 	 La fonction exponentielle népérienne est définie comme étant la réciproque de la fonction logarithme népérien
 Étudier et réprésenter graphiquement la fonction x→ e^x 	 Exponentielle d'une différence Exponentielle d'un produit 	■ On justifiera pourquoi on a exp(x)= e ^x

 Calculer les quelques limites de référence et utiliser ces limites dans la recherche d'autres limites ■ Limites de référence :

$$\lim_{n \to \infty} \left(\frac{e^x}{x} \right) = +\infty$$

$$\lim_{n \to -\infty} (xe^x) = 0$$

▼ Fonctions construites avec la Fonction Exponentielle Népérienne

- Fonction du type exp°u
- Fonction exponentielle de base a(à > 0)
- Fonction du type :

$$x^{a}$$
 (a \in R)
 x^{q} (p \in Z; q \in Z)
 f^{a} (a \in R)
 $u^{v} = e^{vlnu}$

 on étudiera en détail, une fois pour toutes la fonction x→ e^x avec les tangentes en (0 ;1) et (1 ; e) à sa courbe représentative

- on écrira a^x = e^{xlna} (du type exp°u) et on étudiera les cas où 0 < a <1 et a>1
- les types de fonctions cicontre seront à traiter sous formes d'activités, mises à part celles du type : exp°u et u^v auxquelles l'élève devra se familiariser

 Reconnaître des primitives de fonction du type : u'e^u et u^au' et calculer ces primitives

croissances comparées

calculer d'autres limites

de In x, x^a et e^x pour

▼Primitives des fonctions du type : u'e^u et u^au' (a ∈ R)

Connaître et utiliser les résultats relatifs aux ▼ Croissance Comparée des Fonctions Ln x, xa(a ∈ R) et e^x

 $\lim_{n \to \infty} (\frac{\ln x}{x})$ $\lim_{x \to 0} (x^a \ln x)$

$$\lim_{n\to\infty} \left(\frac{e^x}{x^a}\right)$$

▼ Applications des Fonctions Exponentielles et Puissances

 Utiliser les fonctions exponentielles et puissances à la résolution d'équations, d'inéquations et de systèmes Résolution d'équations, d'inéquations et de systèmes on proposera de nombreux exemples et exercices résolus pour apprendre à l'élève à utiliser les formules et à maîtriser les techniques

Calcul Intégral

Durée: 16 heures

- Acquérir la notion de géométrie analytique ;
- Mettre en œuvre les techniques élémentaires pour l'étude analytique de situations rencontrées en géométrie vectorielle

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d'): Connaître la définition d'une intégrale ainsi que ses propriétés élémentaires Interpréter graphiquement une intégrale Déterminer le signe d'une intégrale Utiliser la notion d'une valeur moyenne d'une fonction en sciences physiques(calcul de l'intensité efficace d'un courant alternatif, vitesse moyenne) Calculer la valeur moyenne d'une fonction et interpréter le résultat	 ▼Intégrale d'une fonction Définition Propriétés de l'intégral Relation de Chasles Positivité Linéarité par rapport aux fonctions Inégalités de la moyenne, valeur moyenne d'une fonction 	 On adoptera la définition suivante : ∫_a^b f(x)dx = F(b) − F(a) a et b appartiennent à I et F étant une primitive de f sur I On fera le rapprochement entre inégalités de la moyenne et inégalités des accroissements finis
 Calculer des intégrales : En utilisant les formules de dérivation En effectuant une intégration par partie En effectuant un changement de variable affine Calculer une valeur approchée d'une intégrale par la méthode des rectangles 	 ▼ Quelques méthodes d'Intégration ■ Utilisation inverse des formules de dérivation ■ Intégration par parties ■ Intégration par changement de variables affines ■ Valeur approchée par la méthode des rectangles avec majoration du reste 	■ Concernant les activités sur l' intégration par parties, on insistera sur le fait que le choix initial des fonctions u et v' devra conduire à un calcul plus simple d'une nouvelle intégrale

- Démontrer des inégalités à l'aide du calcul intégral
- Encadrer une intégrale
- Calculer l'intégrale de certaines fonctions rationnelles et trigonométriques
- Étudier certaines fonctions définies par une intégrale
- Calculer l'aire de la partie du plan définie par $(a \le x \le b \text{ et } o \le y \le f(x))$ où f est une fonction continue et positive sur l'intervalle [a, b]

bonne utilisation des une intégration par

▼Application du calcul d'intégral

- Exemples d'étude des fonctions de la forme : $\mathbf{x} \rightarrow \int_{a}^{x} f(t) dt$ où f n'a pas de primitive explicitée
- Calculs de l'aire d'une portion de plan
- Généralisation à une fonction continue de signe quelconque

■ On entraînera l'élève à la notions différentielles dans changement de variables

■ D'autres applications du calcul intégral telles que calcul d'aires, de volumes et de moments d'inertie seront à traiter sous forme d'activités de recherche

Équations différentielles

Durée: 1 semaine

- Calculer une intégrale ;
- Connaître quelques utilisations des intégrales de fonctions :
 - -calcul d'aires, de volumes, de moments d'inerties Définition de nouvelles fonctions

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') : ■ Reconnaître une équation différentielle	■ Équation différentielle du premier ordre : - Forme : y' + ay = 0	 On introduira les équations différentielles par celle du type y'= ky
 Vérifier qu'une fonction est solution d'une équation différentielle donnée 	- Résolution	
■Écrire et résoudre l'équation caractéristique d'une équation type : Y" + ay' + by = 0	 Équation différentielle du second ordre : Forme : y" + ay' + by = 0 Résolution 	■ Dans la réalité, de nombreuses études des phénomènes physiques conduisent à la résolution d'équations du type y' + ay =f ou y" + ay' + by = f où f est
■ Résoudre une équation différentielle : Du type y' + ay = 0 Du type : y" + ay' + by = 0	- Cas particulier *y" = m²y * y" = -m²y	une fonction donnée; on pourra proposer, en activités, de telles situations en prenant soin de bien poser toutes les questions nécessaires qui
 Trouver la solution d'une équation différentielle vérifiant des conditions initiales 	 Quelques exemples d'applications en géométrie, en sciences physiques, 	permettront à l'élève d'arriver à la solution finale

Suites Numériques

Durée: 1,5 semaine

- Étudier la convergence d'une suite et calculer sa limite éventuelle ;
- Utiliser les suites dans le calcul approché;
- Utiliser le raisonnement par récurrence dans l'étude des suites

Objectifs spécifiques L'élève doit être capable de (d') :	Contenus	Observations
Mettre en œuvre le raisonnement par récurrence	▼Raisonnement par récurrence ■ Initialisation à l'aide d'exemples	 Pour initier au raisonnement par récurrence il faut : Faire énoncer les deux étapes du raisonnement Faire écrire à l'ordre n + 1 une propriété donnée à l'ordre n Donner des exemples où l'application p(n) ⇒ p(n+1) est vraie et où p(n) n'est jamais vraie
 Démontrer qu'une suite est monotone, strictement monotone Justifier qu'une suite est majorée, ; minorée, bornée Utiliser des critères fondamentaux pour démontrer qu'une suite converge ou diverge : Suite croissante et majorée (ou décroissante et minorée) Utilisation de suites de référence Utilisation de théorèmes de comparaison 	 ▼Suites numériques Généralités : Suites monotones Suites majorées, minorées, bornées Suites convergentes, suites divergentes : Définition d'une suite convergente et propriétés Théorème sur les suites croissantes et majorées (ou décroissantes et minorées) (théorème à admettre) Exemples de suites divergentes 	 On mettra au point tout le vocabulaire relatif aux suites numériques On dira qu'une suite (Un) converge vers I lorsque tout intervalle contenant I, aussi petit soit-il, contient tous les termes de la suite à partir d'un certain rang. On admettra l'unicité de la limite On donnera des exemples de suite n'ayant pas de

- Image d'une suite

fonction continue en l

convergeant vers I par une

- Application des théorèmes de convergence
- Utiliser certaines techniques pour déterminer la limite d'une suite convergente
- Théorèmes de comparaison

▼Exemples d'étude de quelques suites

- Suites du type :
 n → aⁿ (a > 1 ou lal < 1)
 n → n^α(α ∈ R)
 croissance composée
- Étudier la convergence d'une suite récurrente du type U_{n+1} =f(U_n)
- Traiter des exercices qui font intervenir des suites arithmétiques ou géométriques
- Étudier une suite définie par une intégrale

- Suites récurrentes :
 U n+1 = f(Un) et premier terme donné
- Suite arithmétique
- Suite géométrique
- Étude sur des exemples de suites définies par une intégrale

- On étudiera en particulier les variations et la convergence de ces suites en mettant en œuvre les théories étudiées.
- L'étude des suites en Terminale C complète celle qui a été faite en Première ; quelques séances de révision devront ainsi être menées en cas de besoin sur certaines rubriques du programme de Première C, notamment sur les suites arithmétiques et géométriques

Probabilités

Durée: 1,5 semaine

- Maîtriser les connaissances acquises dans les classes antérieures sur les méthodes et techniques de dénombrement;
- Réinvestir les connaissances acquises sur le dénombrement dans le calcul de probabilités;
- Faire le lien entre le langage probabiliste et le langage ensembliste ;
- Utiliser la formule du binôme.

	-	_
Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') : Reconnaître les cas où l'on procède au calcul : Du nombre d'application d'un ensemble fini dans un autre Du nombre d'arrangement dans un ensemble fini Du nombre de permutation	 Vie dénombrement Consolidation des acquis de la classe de Première (sur des exercices) Formules C_n^p = C_n^{n-p} C_n^p = C_{n-1}^p + C_{n-1}^{p-1} 	Il ne sera pas hors de question de proposer (à titre d'activités) quelques exercices théoriques du genre : $\sum_{k=0}^{n} C_n^k = 2^n$
dans un ensemble fini Du nombre de combinaison dans un ensemble fini Utiliser un triangle de Pascal pour trouver les coefficients binomiaux de (a+b) n Passer du langage probabiliste au langage ensembliste et vice-versa Utiliser les techniques de dénombrement pour calculer des probabilités dans des problèmes de tirage, de lancer de dés, Utiliser les propriétés d'une probabilité pour calculer la probabilité de certains événements Reconnaître un schéma de Bernoulli et appliquer la formule	 Formule du binôme triangle de Pascal ▼Probabilité Langage des événements Notion de probabilité et propriétés Équiprobabilité ▼Loi de Binomiale Schéma de Bernoulli Formule de probabilité associée 	Les probabilités seront introduites à l'aide de situations issues d'expériences aléatoires sans faire cas d'espace probabilisé; on se limitera à des cas où l'univers des éventualités est fini

Géométrie

Calculs barycentres

Durée: 1semaine

- Connaître et utiliser certaines propriétés du barycentre de n points pondérés ;
- Déterminer des coordonnées du barycentre ;
- Utiliser le barycentre dans la résolution de problème de géométrie.

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') : • Déterminer le barycentre	Barycentre de n points	■On insistera sur le fait que
de 2,3,4 points par construction(dans ce cas non trop compliqués)	pondérés - Définition - Propriétés	la construction du barycentre sera rendue plus facile par l'utilisation de la propriété
Déterminer , par le calcul, les coordonnées du barycentre	- Coordonnées	d'associativité
 Calculer les coordonnées barycentriques d'un point 		
Étudier ces deux types de fonctions dans les cas suivant :	• Étude des fonctions $N \mapsto \sum_{i=1}^{n} a_{i} \overrightarrow{AM_{i}}$	 Les activités et exercices proposées dans ce chapitre seront traités
$\sum_{i=1}^{n} \propto i = 0$	$M \mapsto \sum_{i=1}^{n} ai \overline{AMj}$ $M \mapsto \sum_{i=1}^{n} ai \overline{AM}_{i}^{2}$	dans un espace affine de dimension n ≤ 3
et $\sum_{i=1}^{n} \propto i \neq 0$ • Réduire l'expression	$Z_{l=1}$ with I_l	
$\sum_{i=1}^{n} ai \overrightarrow{AM}_{i}^{2}$		
 Résoudre certains problèmes de géométrie faisant intervenir le barycentre des points mis en jeu affectés de coefficients qu'on déterminera Déterminer les lignes de 		
niveau		

Applications affines

Durée: 1,5 semaine

- Connaître ce qu'est une application affine ainsi que ces quelques propriétés ;
- Étudier sur des ensembles, des applications affines du plan ;
- Résoudre des problèmes en utilisant les expressions analytiques d'une application affine.

Objectife and altiques	Contonia	Observations
Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') : Reconnaître une application affine Déterminer, sur des exemples, l'application linéaire associée à une application affine Connaître les propriétés d'une application affine	Applications affinesDéfinitionExemples	 Une application est affine si, et seulement si, elle conserve le barycentre
 Si le point C est dans le plan (O, A, B), alors C' = f(C) est dans le même plan que	 Application linéaire associée; Nature sur quelques exemples Image d'une droite, d'un plan, conservation du parallélisme 	 On admettra que f: E → Eest affine si, et seulement si, pour tout repère (O, A, B, C), l'image de tout barycentre des points O, A, B, C est barycentre des points f(O), f(A), f(B) f(C) avec respectivement les mêmes coefficients (définition analogue dans le cas où E est de dimension 2 ou 1) Une application f est entièrement définie par la donnée des images de quatre points non coplanaires (dans l'espace) ou de trois points non alignés (dans le plan) ce qui permettra deb retrouver les expressions analytiques dans un repère à trois ou à deux dimensions.

Connaître que :

 (O, A, B, C) étant un repère de
 E, un point M de E a pour coordonnées(x, y, z) si et seulement si :

 $\overrightarrow{OM} = x \overrightarrow{OA} + y \overrightarrow{OB} + z \overrightarrow{OC}$ où $(1-x-y-z) \overrightarrow{OM} + x \overrightarrow{MA}$ $+y \overrightarrow{MB} + \overrightarrow{zMC} = O$ M est le barycentre de O, A, B, C affectés respectivement des coefficients 1-x-y-z, x, y, z (formulations analogues dans le cas où E est de dimension 2)

- Écrire les expressions analytiques d'une application affine
- Utiliser les expressions analytiques d'une application affine pour trouver l'mage d'un ou d'une configuration (du plan ou de l'espace)
- Déterminer sur des exemples, la nature et les éléments caractéristiques d'une application affine définie par son expression analytique

- Expression analytiques dans un repère :
- Coordonnées de l'image d'un pont
- Reconnaissance d'une application affine par ses expressions analytiques
- On pourra donner, sous forme d'activités, l'étude d'exemples d'affinités dans le plan, ainsi que quelques exemples d'applications ne conservant pas le barycentre (utilisation des nombres complexes)

Géométrie plane Isométrie affine

Durée: 2semaines

- Étudier systématiquement les translations, rotations et symétries orthogonales dans le but de la classification de ces isométries;
- Résoudre des problèmes de géométrie en utilisant ces transformations

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') :	▼Isométrie	
 Maîtriser les notions étudiées dans les classes antérieures sur les isométries (cf. programme de Première C) Écrire les expressions analytiques d'une translation ; d'une rotation ou d'une symétrie orthogonale 	 Définition Applications qui conservent la distance Propriétés essentielles Translations Rotations 	 On montrera que les isométries sont des applications affines conservant le produit scalaire
 Déterminer la nature d'une transformation par ses expressions analytiques Utiliser les expressions analytiques pour trouver les images de configurations simples d'une courbe Composer : Deux symétries orthogonales Deux rotations de même centre ou non 	 Symétries orthogonales (Expressions analytiques) Reconnaissance de la nature de la transformation définie par ses expressions; compositions; utilisations 	
 Une translation et une rotation Utiliser les translations, les rotations et les symétries orthogonales dans des problèmes de constructions et de lieux géométriques Décomposer une translation en un produit de deux symétries orthogonales 	 Classification des isométries 	 On pourra admettre que Tout déplacement du plan, qui n'est pas une translation, possède un point invariant et un seul Tout antidéplacement g peut s'inscrire de façon unique sous forme g=t°s où s est une symétrie orthogonale et t une translation dont le vecteur dirige l'axe de s

Similitudes planes

Durée: 1,5 semaine

- Connaître et utiliser les similitudes planes ;
- Faire le lien entre nombres complexes et similitudes

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') : ■Énoncer la définition d'une similitude plane	■ Définition d'une similitude plane : il existe un réel k > 0 tel que pour tout bipoint (M, N) on a : M'N' = k MN	 Les similitudes planes seront introduites géométriquement On annoncera qu'une similitude plane est application affine (conserve le barycentre) Toute similitude plane qui n'est pas une isométrie admet un point invariant et un seul
	■Toute similitude s de rapport k peut s'écrire sous forme s= h 0 f où f est une isométrie et h une homothétie de rapport k	■ Toute similitude directe de rapport k ≠ 1, de centre O est le produit commutatif de l'homothétie h(0, k) et d'une rotation de centre O éventuellement réduite à l'identité
 Établir les expressions analytiques et complexes : D'une similitude directe D'une similitude inverse En connaissant que : {x' = ax - by + c {y' = bx + ay + d (pour une similitude directe) {x' = ax + by + c {y' = bx - ay + d (pour une similitude inverse) 	 Similitude directe : Définition Expression analytique Expression complexe Éléments géométriques Images de configurations simples Similitude inverse : 	■ Toute similitude inverse de
	- Définition - Expression analytique - Expression complexe	rapport k ≠ 1,de centre O est le produit commutatif de l'homothétie h(o,k) et d'une symétrie par rapport à une droite passant par O

	Éléments géométriqueImages de configurations simples	 On n'insistera pas top sur les similitudes inverses. On fera plutôt des études sur quelques exemples
 Reconnaître une similitude (directe ou inverse) d'après son expression analytique Écrire l'expression complexe d'une similitude Déterminer les éléments géométriques d'une similitude définie par une expression complexe Utiliser une similitude dans des activités géométriques 	 Étude des applications : z → az +b z → az + b 	

Coniques

Durée: 1,5 semaine

- Définir et étudier géométriquement et analytiquement les coniques ;
- Tracer une conique.

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') :		
■ Définir une conique :	 Définition géométrique (bifocale, foyer et 	 On définira une conique par : étant donnés une droite D, un
- Par foyer et directrice	directrice)	point F n'appartenant pas à D et un réel e strictement positif,
- Par la définition bifocale		la conique de directrice D, de foyer F et 'excentricité est
Tracer point par point une conique :		l'ensemble des points M du plan tels que :
À partir de la définition par foyer et directrice		$\frac{MF}{MH}$ = e (H étant le projeté
- À partir de la définition		orthogonal de M sur D)
bifocale	,	
■ Reconnaître la nature d'une	 Équations cartésiennes 	
conique (perbole, ellipse, o parabole) suivant les suivant	réduites :	
les valeurs de l'excentricité	- D'une parabole	
	- D'une ellipse	

- Faire choix d'un repère convenable pour trouver les équations réduites s'une parabole, d'une hyperbole, d'une ellipse
- Reconnaître la nature d'une conique par la donnée de son équation réduite et déterminer ses éléments géométriques
- Construire géométriquement une conique définie par son équation réduite
- Donner une représentation paramétrique :
- D'une ellipse
- D'une hyperbole
- Écrire l'équation de la tangente en un point donné d'une conique
- Étudier des exemples de courbes d'équation :

$$\frac{x^2}{p} + \frac{y^2}{q} = 1$$

où p et q sont des réels non nuls

 Regazonner le plan à l'aide d'une conique - D'une hyperbole

- Équations paramétriques :
- D'une parabole
- D'une ellipse
- Tangente en un point d'une conique

 Activités : regionnement du plan par une conique On donnera également les définitions d'une ellipse et d'une hyperbole en utilisant les foyers F et F':

E = (M/MF + MF' = 2a)H = [M/IMF' - MF'I = 2]

 On fera découvrir, par l'élève lui-même, une certaine représentation paramétrique de l'ellipse ou de l'hyperbole ainsi que la technique pour retrouver l'équation de la tangente en un point; on fera ensuite retenir les résultats obtenus qui seront directement appliqués

Géométrie dans l'espace

Durée: 1 semaine

Étude sur des exemples de translations, homothéties, symétries orthogonales par rapport à un plan, par rapport à une droite, projection orthogonale

Instructions

On ne fera aucune théorie ; l'essentiel étant seulement que l'élève sache analyser et interpréter une situation et qu'il ait le minimum de notion sur les transformations de l'espace et sur leurs utilisations dans des cas très simplifiés.

Instructions générales

Pour la mise en œuvre du programme :

- Des réflexions devront être menées au niveau de la CPE pour définir un ordre chronologique de traitement des chapitres afin d'assurer une meilleure progression dans le processus d'apprentissage.
- Le programme est conçu pour un enseignement de 50 heures, à raison de 2 heures par semaine, de ce fait :
 - On évitera toute théorie excessive ;
 - L'enseignement devra être orienté vers l'utilisation pratique des théorèmes et propriétés
 - Bon nombre de résultats pourront être admis
 - Un choix judicieux devra s'imposer concernant les exercices d'application de façon à donner aux Mathématiques un caractère attrayant ;
- Le professeur habituera l'élève à :
 - Donner des réponses et de formulations correctes ;
 - Raisonner de façon rigoureuse ;
 - Être performant en calcul aussi bien numérique que littéral.
- Enfin, il est demandé au professeur d'assurer un bon équilibre entre les différentes parties du programme.
- Recommandation : Traiter le programme, tout le programme

Évaluations

On mettra en œuvre des formes diversifiées d'évaluation valables pour tous les chapitres étudiés :

- Exercices de contrôle des acquis, généralement courts (suivi de correction immédiate)
- Exercices d'application directe pour faire fonctionner les définitions et les propriétés et favorisant ainsi l'assimilation des notions étudiées (rédigés en groupes)
- Exercices d'entrainement pour consolider les acquis (à faire traiter à la maison) ;
- Exercices de synthèse pour coordination des acquisitions diverses ;
- Exercices de recherche pour faire découvrir par l'élève une méthode de résolution de problème plus complexe et pour le préparer aux divers examens de fin de cycle (à faire traiter en classe et individuellement sous forme de devoirs surveillés).

Classe Terminale D

Objectifs de la matière

Les Mathématiques doivent amener l'élève à :

- Développer des habilités intellectuelles et psychomotrices ;
- Acquérir les concepts fondamentaux dans les domaines de la numération, de la géométrie et de la mesure ;
- Maîtriser les stratégies et les automatismes de calcul ;
- Acquérir une bonne méthodologie dans la recherche des solutions à des exercices ou problèmes;
- Conjecturer, s'efforcer de prouver et contrôler des résultats obtenus ;
- Développer les qualités d'expression écrite et orale (clarté de raisonnement, soin apporté à la présentation et la rédaction);
- Acquérir une formation scientifique lui permettant de poursuivre des études et/ou de s'intégrer dans la vie active et professionnelle.

Objectifs de l'enseignement des Mathématiques au Lycée

A la sortie du Lycée, l'élève doit être capable de (d') :

- Maîtriser et appliquer les connaissances antérieurement acquises
- Faire appel à l'intuition, à l'esprit d'analyse et de synthèse,
- Maîtriser la capacité à mettre en ouvre le raisonnement déductif ainsi que les autres types de raisonnement;
- Faire des raisonnements rigoureux ;
- Avoir une attitude scientifique face à un problème.

Objectifs des Mathématiques en Terminale D

A la fin de la classe Terminale D, l'élève doit être capable de (d') :

- Mettre les diverses méthodes de résolution de systèmes d'équations linéaires dans R³ en vue de leurs applications à des problèmes de la vie courante
- Maîtriser les techniques de calculs sur les nombres complexes ainsi que leur utilisation en géométrie plane;
- Résoudre divers problèmes d'Analyse en mettant en œuvre les techniques et numériques et au calcul d'intégrales;
- Réinvestir les connaissances acquises en dénombrement dans des calculs de probabilités;
- Résoudre des problèmes concrets utilisant les notons de variables aléatoires et d'indépendance d'événements;
- Étudier une série statistiques à deux variables.

Volume horaire

6 heures par semaine

Méthodes de raisonnement

L'apprentissage du raisonnement (par récurrence, par contraposition, par l'absurde, par contre-exemple) ne devra pas faire l'objet de cous systématique, mais sera introduit et réinvesti chaque fois que les occasions se présentent. On insistera sur la pratique et sur l'utilisation de ces méthodes (plutôt que sur la théorie) à travers des exemples rencontrés en cours d'année.

On approfondira la technique du raisonnement par récurrence quand on étudiera les suites numériques

Algèbre

Systèmes d'équations linéaires dans R³

Durée: 1 semaine

- Maîtriser certaines méthodes de résolution de systèmes d'équations linéaires dans R³;
- Résoudre un problème concret se ramenant à un système d'équations linéaires dans R³

01 '	0 1	
Objectifs spécifiques	Contenus	Observations
L'élève doit être capable de (d'): • Résoudre un système d'équations linéaires dans R³ par la méthode d'élimination de Gauss, par substitution	 Résolution par/ méthode d'élimination de Gauss, Substitution 	 On ne fera aucune théorie mais on expliquera le principe à l'aide d'exemples simples.
 Analyser et interpréter les résultats ou solutions d'un système d'équations Faire le choix de la méthode de résolution la plus performante Mettre en équation et résoudre des problèmes se ramenant à un système d'équations linéaires dans R³ Détermination d'une fonction polynôme Décomposition d'une fraction rationnelle, etc 	Problèmes se ramenant à un système d'équations linéaires	 On donnera des exercices montrant qu'un système peut admettre une solution unique ou une infinité de solutions ou aucune solution Suivant les cas, on laissera l'élève utiliser la plus performante des deux méthodes

Ensemble C des nombres complexes

Durée: 4 semaines

- Maîtriser les calculs sur les nombres complexes ;
- Faire le lien entre nombre complexe et sa représentation géométrique ;
- Utiliser les nombres complexes pour résoudre des problèmes (résolution d'équations du second degré, résolution de problèmes de géométrie ; application à la trigonométrie.

	Contenus	Observations
Objectifs spécifiques L'élève doit être capable de (d'): Effectuer toutes les opérations dans C Déterminer la partie réelle, la partie imaginaire, le conjugué d'un nombre complexe Connaître et utiliser la définition et les propriétés essentielles d'un conjugué d'un nombre complexe	Contenus ■ Bijection de R² sur C - Forme algébrique - Opération dans C - Propriétés : l'ensemble C est un corps ■ Conjugué d'un nombre complexe - Définition - Propriétés - Module d'un nombre	■ Une construction très détaillée de l'ensemble C n'est pas souhaitable ; tout point M(a, b) du plan représente un nombre complexe z=a + ib tel que le nombre i vérifie : i²: -1 ■ On montrera que : - Les opérations dans C prolonge celles dans R C est un corps (sans insister sur la notion de
 Calculer le module d'un nombre complexe écrit sous sa forme algébrique Utiliser dans les calculs les propriétés essentielles des modules de nombres complexes Rechercher les lieux géométriques à l'aide de nombres complexes Passer de la forme algébrique à la forme trigonométrique et réciproquement Déterminer le module et l'argument d'un nombre complexe Calculer le module et l'argument d'un produit, d'un quotient, d'une puissance 	 Interpréter géométrique d'un nombre complexe Image d'un nombre complexe Image d'un nombre complexe D'un point, d'un vecteur Interprétation de la somme, du conjugué, du module: Forme trigonométrique d'un nombre complexe : Module et argument Formule de Moivre Racine n-ième d'un nombre complexe Interprétation géométrique d'un produit et du quotient de deux nombres complexes 	structure algébrique) On mettra en valeur les idées ont conduit à l'introduction des nombres complexes et on soulignera leur rôle en géométrie plane

 Trouver les racines n-ième d'un nombre complexe (arc de solutions) déterminer l'angle de deux vecteurs dont on connaît les affixes 		
---	--	--

Utilisation des nombres complexes

Objectifs spécifiques	Contenus	Observations
L'élève doit être capable de (d'):		
 Déterminer algébriquement les racines d'un nombre complexe donné sous sa forme algébrique Résoudre dans C une équation du second degré à coefficients réels ou 	 Équation du second degré Résolution algébrique Factorisation de polynôme 	
complexes Connaître et utiliser la notation exponentielle dans les calculs	 Complément de trigonométrie : Notation exponentielle d'un nombre complexe 	 La notation exponentielle sera utilisée indépendamment de l'étude complète de la fonction exp.
 Passer de la forme trigonométrique à la notation exponentielle 	 Formules d'Euler linéarisation de polynômes trigonométriques 	 Concernant les formules d'Euler et leurs utilisations, on ne devra, en aucun cas, faire aucune théorie mais
 Connaître et utiliser la formule d'Euler dans des problèmes de linéarisation de polynômes trigonométriques 	 conversion de produits, en sommes et de sommes en produits réduction de 	on passera tout de suite à quelques exemples d'exercices permettant à l'élève de maîtriser la
 Mettre en œuvre certaines techniques pour transformer asinx + b cosx Résoudre des équations du type : asinx + b cosx = c Utiliser les formules de Moivre 	asinx + b cos x	technique Il sera hors de question de présenter des excès de technicité.
et d'Euler pour transformer des expressions trigonométriques		

Analyse

Limites et continuité

Durée: 1 semaine

- Maîtriser la notion de limites et de continuité de fonctions ;
- Résoudre des problèmes relatifs aux notions de limite et de continuité de fonctions

	_	
Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') : Calculer une limite sans utiliser des dérivées Limite en 0 et l'infini des fonctions de référence Utilisation des théorèmes de comparaison Utilisation des opérations sur les limites Si une fonction est	 ▼ Méthode de recherche de limites • Opérations sur les limites • Limites de référence • Théorème de comparaison • Limite de la composée de deux fonctions 	Suivant le niveau de sa classe, on laissera au professeur le choix de démontrer ou non les théorèmes ou propriétés contenus dans ce chapitre, hormis celui de la composée de deux fonctions qu'on admettra. On devra, par
croissante sur]a, b [(a <b) et<br="">si elle est majorée, alors elle admet une limite à gauche en b</b)>	Limite d'une fonction monotone sur un intervalle ouvert] a, b [▼Étude de branches	contre, proposer de nombreux exercices permettant à l'élève de se familiariser avec leur utilisation dans la pratique.
 Justifier qu'une droite est asymptote à une courbe d'équation donnée Rechercher une direction asymptotique Rechercher une asymptote à une courbe d'équation donnée Étudier la position d'une courbe par rapport à une asymptote 	 infinies d'une courbe Direction asymptotique Asymptote Asymptote position de la courbe par rapport aux asymptotes Fonction continue 	
■ Voir la continuité ou la non continuité d'une fonction à partir d'une représentation graphique	sur intervalle • Définition	On admettra que l'image d'un intervalle par une fonction continue est un intervalle et que l'image d'un segment est un segment

- Justifier qu'une fonction est continue sur un intervalle
- Trouver l'image d'un intervalle par une fonction à l'aide du tableau de variation de cette fonction
- Justifier à l'aide du théorème des valeurs intermédiaires qu'une équation du type f(x)= 0 admet au moins une solution sur un intervalle donné
- Connaître et utiliser quelques méthodes d'approximation des solutions d'une équation (dichotomie, encadrements successifs)
- Tracer dans repère orthonormé la courbe représentative de la fonction réciproque d'une fonction bijective
- Prolonger une fonction par continuité lorsque c'est possible

- Opérations sur les fonctions continues
- Image d'un intervalle par une fonction continue; image d'un segment
- Théorème des valeurs intermédiaires
- Réciproque d'une fonction continue et strictement monotone sur un intervalle :
- Théorème
- Valeur approchée d'une solution d'une équation
- Représentation graphique
- Prolongement par continuité

 La continuité de la fonction réciproque sera également admise
 On étudiera l'exemple de la

On étudiera l'exemple de la fonction $x \to \sqrt[n]{x}$ où $n \in \mathbb{N}$ - $\{0,1\}$ (fonction racine n-ième)

Dérivation

Durée: 1 semaine

- Maîtriser les techniques de calculs sur les dérivées de fonctions ;
- Connaître certaines applications de la dérivée à des problèmes plus complexes et variés

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') :		0.000113.000
Calculer la fonction de la composée de deux fonctions dérivables	 Fonction dérivée d'une fonction composée : existence et formule 	 Hormis la démonstration du théorème et du formule de dérivation de la composée de deux
 Calculer la dérivée d'une fonction du type f^m (m ∈ Q) 	 Dérivée de la fonction f^m où m ∈ Q 	fonctions dérivables, tout excès de théorie s'avère inutile l'essentiel sera de
Calculer la dérivée de la fonction réciproque d'une fonction bijective	 Fonction dérivée de la réciproque d'une fonction dérivable strictement monotone sur un intervalle (existence et formule admises 	rendre mécanique l'utilisation de la formule dans le calcul de la dérivée ; qui sera certainement complétée lors de l'étude de la fonction logarithme et exponentielle
 Utiliser le théorème des inégalités des accroissements finis à quelques problèmes d'encadrement de fonctions 	 Inégalités des accroissements finis : théorème application à des problèmes simples d'encadrement 	 On proposera des exercices ne comportant aucune difficulté majeure mais visant surtout à faire appliquer directement le théorème des inégalités des accroissements finis
Calculer (quand c'est possible) des dérivées successives	Dérivées successives :DéfinitionNotation différentielle	 La notation différentielle des dérivées (surtout de la dérivée première) sera annoncée car l'élève pourra s'en servir en sciences physiques et dans des calculs d'intégrales
Utiliser la notion de dérivée à la recherche d'une certaine limite de fonction en un point	Exemples d'utilisation de la dérivée à des problèmes classiques de recherche de limites	 On restera au stade d'initiation à l'utilisation du nombre dérivé pour déterminer une limite

Primitives de fonctions

Durée: 2,5 semaines

- Calculer une primitive d'une fonction, une intégrale ;
- Connaître quelques utilisations simples des primitives et des intégrales

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') : • Formuler la définition d'une primitive d'une fonction définie et continue sur un intervalle	■ Définition et propriétés : F est une primitive de f sur l signifie que F est dérivable sur l et que pour tout x de l F'(x) = f(x)	On admettra l'existence d'une primitive d'une fonction continue sur un intervalle
 Vérifier qu'une fonction donnée est une primitive d'une autre donnée sur un intervalle Connaissant une primitive d'une fonction f sur un intervalle I Écrire la forme générale des primitives de f sur I 	 Propriétés : Théorème de l'existence d'une primitive Deux primitives, sur un même intervalle, d'une fonction différente d'une constante 	 On donnera des exemples de fonction non continue admettant des primitives
 Déterminer la primitive de f qui prend une valeur donnée en un point donné 	-Primitive d'une fonction, prenant la valeur y ₀ en un point x ₀	
■ Déterminer les primitives d'une fonction à partir des formules de dérivation (lecture inverse du tableau de dérivation)	 Calcul des primitives : Primitives des fonctions usuelles Opérations sur les primitives Primitives des fonctions du type :	 On proposera de nombreux exemples et exercices résolus pour l'élève puisse se familiariser avec l'utilisation des formules et propriétés des primitives

Fonction logarithme népérien Logarithme décimal

Durée: 2 semaines

- Se familiariser avec la fonction logarithme népérien ainsi qu'avec ses propriétés essentielles;
- Utiliser ces propriétés à la résolution de divers problèmes :
 - Calcul des primitives ;
 - Résolution d'équations, inéquations, systèmes ;
 - Calculs numériques ;
 - étude de nouvelles fonctions construites à partir de la fonction ln.

Objectifs spécifiques	Contenus	Observations
L'élève doit être capable de (d'): ■ Étudier la fonction logarithme népérien x→ ln x (ensemble de définition, limite en 0 et+∞, dérivée et sens de variation, directions asymptotiques, tangentes remarquables) ■ Utiliser les propriétés algébriques de la fonction	 ▼ Logarithme népérien ■ Définition, notation : In x ■ Étude de la fonction ; le nombre e, limites en 0 et en +∞ ■ Propriétés algébriques 	 On définira la fonction logarithme népérien, notée ln, comme étant la primitive définie sur]0; +∞[de la fonction 1/x, s'annulation pour x= 1 Il serait important d'étudier en détail, une fois
In dans des calculs algébriques Trouver des limites de fonctions où intervient la fonction In en application de quelques limites classiques	 logarithme d'un produit Logarithme d'un quotient Logarithme d'une puissance Logarithme d'un carré Limites de référence lim _{n→∞} (lnx / xn) = 0 lim _{n→0} xlnx = 0 	pour la fonction x→ ln x, on n'oubliera pas que cette fonction réalise une bijection de]0,+∞[sur R
 Calculer la dérivée d'une fonction du type ln (u(x)) telle que u est une autre fonction Étudier la composée d'une fonction avec la fonction logarithme népérien Utiliser la fonction logarithme décimal dans des calculs numériques 	▼Fonctions construites avec la fonction logarithme népérien ■ Logarithme décimal : - Définition - Utilisation dans les calculs numériques	 On définira la fonction logarithme décimal, noté, log, par Log x = ln x / ln 10 ■ On utilisera la fonction logarithme décimal à travers quelques activités de calculs numériques (utilisation de la table

		numérique)
Reconnaître les primitives des fonctions d type f/f Calculer ces primitives	▼ Calculs de certaines Primitives ■ Primitives des fonctions du type f / f	
 Résoudre des équations et inéquations se ramenant à : lna= ln b ; in a ≤ in b 	 ▼ Fonction logarithme et Équations/inéquations systèmes ■ Équations du type : In[u(x)] = m ■ Inéquations du type : In [u(x)] ≤ m 	 On proposera de nombreux exemples et exercices pour faire maîtriser les formules et
Résoudre des équations et systèmes d'équations à l'aide d'inconnues auxiliaires	 Autres types d'équations et d'inéquations Systèmes d'équations (utilisation d'inconnues auxiliaires) 	techniques de résolution

Fonction exponentielle népérienne Fonctions puissances

Durée: 2 semaines

- Se familiariser avec la fonction exponentielle népérienne ainsi qu'avec ses propriétés essentielles;
- Utiliser ces propriétés à la résolution de divers problèmes :
 - Calcul des primitives ;
 - Résolution d'équations, inéquations, systèmes ;
 - Calculs numériques ;
 - étude de nouvelles fonctions construites à partir de la fonction exponentielle

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de		
(d'):	▼Exponentielle népérienne	 On définira la fonction exponentielle népérienne,
 Étudier la fonction exponentielle népérienne (ensemble de définition, 	■ Définition Notation exp(x)	notée exp, comme étant la bijection réciproque de la fonction logarithme népérien
limite en −∞ et+∞, dérivée et sens de variation, directions asymptotiques, tangentes remarquables…)	Étude de la fonction x→ e ^x	 Pour tout réel x >0 et pour tout réel y, y= lnx ⇔ x= exp y
 Utiliser les propriétés algébriques de la fonction 	■ Propriétés algébriques : - Exponentielle d'une	 Il serait également important d'étudier en détail, une fois

exponentielle népérienne dans des calculs algébriques

- Calculer des limites de fonction où intervient la fonction exponentielle népérienne en application de quelques limites classiques
- Calculer la dérivée de la fonction du type exp[u(x)] telle que u est une autre fonction
- étudier les courbes représentatives de fonctions du type exp° u(variation et courbe) cas particulier des fonctions x→ ex
- Reconnaître des primitives de fonctions du type : f'exp(f) et calculer ces primitives
- Résoudre des équations, inéquations et de systèmes se ramenant à exp(a) = exp(b)
 Ou Exp(a) ≤ exp(b)
- Résoudre des équations ou systèmes à l'aide d'inconnues auxiliaires

somme

- Exponentielle d'une différence
- Exponentielle d'un produit
- Limites de référence :

$$\lim_{n\to\infty}\left(\frac{e^x}{x}\right) = +\infty$$

$$\lim_{n\to-\infty}(xe^x)=0$$

▼Fonctions construites avec la Fonction Exponentielle Népérienne

- Fonction du type exp°u
- Fonctions puissances
 X → a^x = e^{xlna}
 Où a est strictement positif
- application

▼ Calcul de certaines primitives

Primitives des fonctions du type : f'exp(f)

▼fonction exponentielle et équations/ inéquations /systèmes

■ Équations du type :

$$e^{u(x)}$$
= m

■ Inéquations du type

$$e^{u(x)} \le m$$

- Autres types d'équations ou inéquations
- Systèmes d'équations (utilisation d'inconnues auxiliaires)

pour la fonction $x \rightarrow e^x$, on n'oubliera pas que cette fonction réalise une bijection de R sur]0,+ ∞ [; on fera remarquer les positions relatives des courbes représentatives des fonctions $x \rightarrow e^x$ et $x \rightarrow \ln x$ (cf. chapitre sur la représentation graphique de la réciproque d'une fonction continue strictement monotone sur un intervalle)

Les définitions x→ a^x écrit sous la forme e^{xlna} seront étudiées, en activités, comme étant des fonctions du type exp°u.

On n'oubliera pas les où 0 < a < 1 et a>1. Comme applications des fonctions puissances, on donnera en activités des exemples liés aux problèmes économiques et aux problèmes biologiques

 On proposera de nombreux exemples et exercices pour faire maîtriser les formules et techniques de résolution

Étude et représentation graphique de fonctions

Durée : 1 semaine

- Mettre en œuvre les techniques fondamentales pour l'étude des fonctions numériques;
- Exploiter des représentations graphiques de fonctions numériques

l'élève doit être capable de	
 Maîtriser les méthodes et démarches générales pour l'étude des fonctions numériques Recherche de l'ensemble de définition Calcul des limites aux bornes Calcul de la dérivée et étude de signe Tableau de variations Traçage de la courbe représentative 	Ce chapitre complète et renforce les compétences et savoir-faire acquis dans les classes antérieure ; il ne fera donc pas l'objet d'étude particulière tions rationnelles tions logarithme et nentielle ques types de ions irrationnels La recherche d'asymptotes obliques et de points d'inflexion ne sera pas à faire de façon systématique Il n'est pas interdit de donner des exemples de fonctions composées de deux quelconques des types figurant au programme ; toutefois on devra veiller à ce que les exercices ou fonctions proposées ne présentent de difficulté excessive pouvant faire appel à

- Retrouver toutes les propriétés d'une fonction par simple lecture de sa représentation graphique
- Résoudre graphiquement et des équations et des inéquations du type :

$$f(x) = g(x)$$

$$f(x) \le g(x)$$

f(x) = m

 $f(x) \le m$

▼ Utilisation de représentations graphiques de fonctions

- Résolution graphique d'équations ou d'inéquations
- Détermination graphique de termes d'une suite

Suites Numériques

Durée: 2 semaines

- Utiliser le raisonnement par récurrence dans l'étude des suites ;
- Étudier la convergence d'une suite et calculer sa limite éventuelle

Objectifs spécifiques	Contenus	Observations
L'élève doit être capable de (d') :		
 Mettre en œuvre le raisonnement par récurrence 	 Raisonnement par récurrence Suites monotones Définition d'une suite monotone croissante ou décroissante : Exemples 	 On donnera de nombreuses activités permettant à l'élève de maîtriser la technique du raisonnement par récurrence (toute théorie étant exclue)
■ Démontrer qu'une suite est monotone, strictement monotone	- Suite strictement monotone	,
Justifier qu'une suite est majorée; minorée, bornée	Suite majorée, suite minorée, suite bornéeDéfinitions:Exemples	
■Étudier les variations et les convergences d'une suite :	 Convergentes: Définition d'une suite convergente Exemples de suites convergentes 	 On définira une suite convergente vers I par : Tout intervalle ouvert, le centre I, aussi petit soitil, contient tous les termes de la suite à partir d'un certain rang ; La définition d'une limite par (A,ε) n'est pas exigible
- Suite croissante et majorée (ou décroissante et minorée)	- Suite divergente	exigible
- Utilisation de théorèmes de comparaison	- Théorème : toute suite croissantes et majorées (ou décroissantes et minorées) (théorème à admettre) converge	
- Utilisation de suites de référence	- Théorèmes de comparaison	

- Représenter et déterminer graphiquement les termes d'une suite
- Conjoncturer à l'aide d'un graphique le comportement d'une suite(variations, existence de la limite)
- Étudier des suites du type :
 Un = f(n)
 U_{n+1} = g(U_n)
 Le premier terme étant donné
- Résoudre des problèmes simples relatifs aux termes d'une suite arithmétique ou géométrique
- Étudier les variations et la convergence de ces deux types de suite en fonction de la raison et du premier terme

 Limite de la composée d'une suite par une fonction continue

- Étude de quelques suites récurrentes
 Cas particuliers :
 - Suite arithmétique
 - Suite géométrique
 - Somme de termes
 - Variation et limites
- On étudiera en parallèle suite arithmétique et suite géométrique de façon à mettre en évidence la dualité entre ces deux types de suite
- Le premier contact avec les suites arithmétiques et géométriques a été faite en classe de première, il conviendra donc cette année d'approfondir ces notions et d'améliorer les techniques de calcul et de raisonnement, notamment en ce qui concerne l'étude de variations et la recherche de limite

Dénombrement et probabilité

Durée: 6 semaines

Objectifs généraux : l'élève doit être capable de (d') :

- Maîtriser les connaissances acquises dans les classes antérieures sur les méthodes et techniques de dénombrement;
- Réinvestir les connaissances acquises sur le dénombrement dans le calcul de probabilités;
- Résoudre des problèmes ou exercices sur les variables aléatoires.

Dénombrement (révision)

Durée: 1semaine

- Reconnaître les situations où intervient l'analyse combinatoire ;
- Réinvestir des dénombrements en utilisant les formules Anp et Cnp mais à l'aide d'arbres ou d'autres représentations;
- Se familiariser avec l'utilisation de la formule du binôme.

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d'): • Utiliser le langage des ensembles pour décrire une situation • Dénombrer en utilisant des cardinaux d'ensemble fini • Déterminer le nombre d'applications d'un ensemble fini dans un autre • Dénombrer des arrangements, des permutations, des combinaisons • Maîtriser les règles de la somme et du produit en dénombrement • Connaître et utiliser les propriétés $C_n^p = C_n^{n-p} (0 \le p \le n)$ $C_n^p = C_{n-1}^p + C_{n-1}^{p-1}$ $(0 \le p \le n)$	 Nombre d'applications d'un ensemble fini dans un autre ensemble fini Arrangement dans d'un ensemble fini : Formule : A_n^p (p ≤ n) Permutation dans un ensemble fini Formule : n! Combinaison dans un ensemble fini Formule C_n^p(p ≤ n) Binôme de Newton et triangle de Pascal 	■ Ce chapitre sera traité à tire de révision. Il importe donc de compléter les connaissances en Première par d'autres compétences plus complexes et variées, d'améliorer la performance de l'élève en matière de raisonnement et de technique de calculs

 Utiliser la formule du binôme établir le triangle de Pascal et l'utiliser pour trouver les coefficients binomiaux de (a +b)² 		
--	--	--

Notion de probabilité

Durée: 1 semaine

- Résoudre des exercices de probabilité à l'aide de dénombrement ;
- Reconnaître le cas où s'applique l'hypothèse d'équiprobabilité;
- Faire le lien entre le langage probabiliste et celui des ensembles.

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') :	Contonac	
 Utiliser le vocabulaire des probabilités Passer du langage probabiliste au langage ensembliste et réciproquement Décomposer un événement donné en la réunion d'événements deux à deux disjoints 	 Vocabulaire probabiliste : Éventualité et univers Événement élémentaire Événement (en relation avec la théorie des ensembles) Opérations sur les événements : Intersection et réunion Événement contraire Événement qui en implique un autre 	 Les probabilités seront introduites sur des situations issues d'expériences aléatoires sans faire cas d'espace probabilisé On se limitera à des cas où l'univers des éventualités est fini
 Utiliser les techniques de dénombrement pour calculer des probabilités de tirage, de lancer de dés, etc Calculer des probabilités élémentaires et la probabilité d'une réunion d'événements Utiliser les propriétés d'une probabilité pour calculer la probabilité de l'événement contraire P(A)=1-p(A) Calculer la probabilité d'un événement lié à des tirages successifs avec ou sans remise 	 Notion de probabilité Définition Propriétés Probabilité uniforme Formule P(A)= Nombre des cas favorables nombre des cas possibles Tirages successifs Avec remise Sans remise 	■ La probabilité d'un événement A sera définie comme étant la somme des probabilités des événements élémentaires contenus dans A Notation : P(A)

Probabilité conditionnelle

Durée: 1,5 semaine

- Acquérir une notion très simplifiée en probabilité conditionnelle et en indépendance d'événements;
- Résoudre certains exercices et problèmes relativement simples utilisant ces deux notions

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de (d') : Saisir la différence entre événements indépendants (liés à la notion de probabilité) et événements incompatibles (intersection vide)	Notion d'événements indépendants : P(A∩B) = P(A) x P(B)	 Ce chapitre étant généralement assez difficile au niveau des terminales, il serait utile de commencer son apprentissage par des activités introductives
 Prouver que deux événements A et B sont indépendants en utilisant la définition 		 La formule de Bayes est hors programme ainsi que la notion de probabilité
 Calculer des probabilités conditionnelles en utilisant la définition 	 Probabilité conditionnelle : Définition P_B(A) = P (A /B)= P(A ∩ B)/P(B) 	
 Prouver l'indépendance de deux événements A et B en utilisant la probabilité conditionnelle 	- A et B sont indépendants si et seulement si P(A/B) = P(A)	
 Calculer la probabilité de l'intersection de deux événements A et B connaissant celle de B et celle de (A/B) 	- Épreuve de Bernoulli et distribution binomiale	 On admettra du sens à la formule : P(k)=C_n^k p^k (1 − p)^{n-k}
 Reconnaître le schéma de Bernoulli et calculer les probabilités associées 	- Formule de probabilités composées	

Variables aléatoires

Durée: 1,5 semaine

- Connaître le sens pratique donné aux notions de variables aléatoires, d'espérance mathématique, de variance et d'écart-type
- Reconnaître les situations où s'applique la loi binomiale et calculer ses caractéristiques

Objectifs spécifiques	Contenus	Observations
l'élève doit être capable de		
(d'):	▼Variable aléatoire	On ne définira pas la variable aléatoire de façon
Déterminer la loi e probabilité d'une variable aléatoire	Notion de variable aléatoire	explicite mais on la fera saisir, par l'élève, à travers un ou des exemples introductifs
Définir la fonction de répartition et la représenter	■ Univers-image	On définira la fonction de répartition par
graphiquement	- Loi de probabilité	F(x)=P(X <x) et="" l'on<br="">annoncera les quelques</x)>
Calculer l'espérance mathématique, la variance	- Espérance mathématique	propriétés de F uniquement dans le but
et l'écart –type d'une variable aléatoire	- Variance et écart-type	d'une meilleure représentation graphique de la fonction
Utiliser le symbole ∑ dans l'expression caractéristique d'une variable aléatoire	- Fonction de répartition	
Reconnaître les situations où s'applique la loi binomiale	■Loi binomiale B (n, p) : Loi de probabilité	 On ne parlera ni d'opération sur les variables aléatoires ni de propriétés des
Calculer directement les caractéristiques d'une loi binomiale		caractéristiques, hormis l'usage de la formule : V(x)= E(x2) –[E(x)] ²
Lire et interpréter la	Caractéristiques :	
représentation graphique de la fonction de répartition	E(x)= np	
d'une variable aléatoire	V(x) = np (1-p)	
 Connaître le sens pratique donnée aux caractéristiques d'une variable aléatoire 	$\sigma(x) = \sqrt{np(1-p)}$	

Statistique

Durée: 2,5 semaines

- Maîtriser les notions acquises dans les classes antérieures sur les séries statistiques à une variable (regroupement en classes, représentations graphiques, caractéristiques de position et de dispersion)
- Étudier des séries statistiques à deux variables.

Objectifs spécifiques	Contenus	Observations
	Contenus	ODSCI VALIOIIS
L'élève doit être capable de (d') : • Représenter graphiquement une série statistique • Calculer la moeyenne, la variance, l'écart-type d'une série statistique simple par application directe des formules appropriées $X = \frac{\sum nixi}{N}$ $V(x) = \frac{\sum nixi2}{N} - \overline{x}^2$ $\sigma(x) = \sqrt{V(x)} = \text{où N} = \sum ni$	 ▼Révision Série statistique à une variable Représentation graphique Caractéristique de position Caractéristique de dispersion ▼Série statistique à deux variables 	 A titre indicatif, on rappellera les notions étudiées en classes de Seconde et Première concernant les séries à une variable, sous forme d'activités, avant de commenter l'étude des séries statistiques à deux variables; plus particulièrement les formules donnant la moyenne x, la variance V(x) et l'écart-type σ (x)
 Représenter graphiquement un nuage de points et de déterminer les coordonnées (x̄, ȳ) du point moyen G Définir une droite d'ajustement (ou droite de régression) de y en x (resp. de x en y) 	 Représentation d'un nuage de points : Cas des points pondérés Point moyen 	• on donnera de nombreux exercices de calculs de covariance, pour faire maîtriser l'utilisation de la formule : $cov(x,y) = \frac{1}{N} \sum (xi - \bar{x})(yi - \bar{y})$ $= \frac{1}{N} \sum (xiyi) - \bar{x}\bar{y}$
Calculer une covariance	 Ajustement linéaire par la méthode des moindres carrés : Droites de régression Détermination des droites de régression 	

- Déterminer :
- L'équation de la droite de régression de y en x
- L'équation de la droite de régression de x en y
- Calculer le coefficient de corrélation linéaire d'une série à deux variables x et y

$$r = \frac{cov(x, y)}{\sigma(x) \cdot \sigma(y)}$$

 Interpréter un coefficient de corrélation d'une série statistique à deux variables

- Corrélation linéaire :
- coefficient r de corrélation
 - interprétation du coefficient de corrélation

 il en sera de même de la détermination de la droite de régression de y en x :

$$y = ax +b$$
où
$$a = \frac{cov(x,y)}{[\sigma(x)]2}$$

et b vérifie :

$$\bar{y} = a\bar{x} + b$$

(ou celle de x en y)

 on entraînera l'élève à une présentation plus commode des calculs

Instructions générales

Pour la mise en œuvre du programme :

- Des réflexions devront être menées au niveau de la CPE pour définir un ordre chronologique de traitement des chapitres afin d'assurer une meilleure progression dans le processus d'apprentissage.
- Le programme est conçu pour un enseignement de 50 heures, à raison de 2 heures par semaine, de ce fait :
 - On évitera toute théorie excessive ;
 - L'enseignement devra être orienté vers l'utilisation pratique des théorèmes et propriétés
 - Bon nombre de résultats pourront être admis
 - Un choix judicieux devra s'imposer concernant les exercices d'application de façon à donner aux Mathématiques un caractère attrayant ;
- Le professeur habituera l'élève à :
 - Donner des réponses et de formulations correctes ;
 - Raisonner de façon rigoureuse ;
 - Être performant en calcul aussi bien numérique que littéral.
- Enfin, il est demandé au professeur d'assurer un bon équilibre entre les différentes parties du programme.
- Recommandation : Traiter le programme, tout le programme

Évaluations

On mettra en œuvre des formes diversifiées d'évaluation valables pour tous les chapitres étudiés :

- Exercices de contrôle des acquis, généralement courts (suivi de correction immédiate)
- Exercices d'application directe pour faire fonctionner les définitions et les propriétés et favorisant ainsi l'assimilation des notions étudiées (rédigés en groupes)
- Exercices d'entrainement pour consolider les acquis (à faire traiter à la maison);
- Exercices de synthèse pour coordination des acquisitions diverses ;
- Exercices de recherche pour faire découvrir par l'élève une méthode de résolution de problème plus complexe et pour le préparer aux divers examens de fin d'année