

Etude d'un dipôle R.L.C avec le logiciel "Solvelec"

1. Pourquoi utiliser «solvelec»?:

Ce logiciel de simulation permet de placer l'utilisateur dans la situation d'une manipulation d'électricité **quasi réelle**. La simulation pourra servir de **préalable à une étude théorique** du circuit R.L.C. Elle pourra aussi permettre une vérification quasi expérimentale des calculs ! La fonction «oscilloscope» est **précieuse** car ce matériel onéreux n'est pas toujours disponible dans les classes de lycée! La rubrique «**solution**» permet d'associer les calculs qui se rapportent au circuit avec les courbes proposées par le logiciel. Il permet aussi aux professeurs de créer leur propre démarche de cours; ils apprécieront ce support intéressant. Il faut simplement apprendre à l'utiliser et ce n'est pas difficile car toutes les explications sont données dans la rubrique «**documentation**» de la barre des menus!

2. Exemple d'étude d'un circuit R.L.C série:

Ouvrir le logiciel «solvelec» et sélectionner l'option «Régime sinusoïdal»

2.1 Réalisation du schéma du circuit

Dessiner le schéma du circuit comme représenté ci-dessous en utilisant les différents outils de la colonne de gauche . Il est possible d'obtenir de l'aide pour réaliser ce schéma :**dans la barre de menu** cliquer sur «**documentation**» puis «**aide**». Le schéma réalisé pourra être ensuite stocké dans un dossier de l'ordinateur. (Fichier>enregistrer) . Il sera ouvert à la demande .Cela permettra à l'élève de gagner du temps après une première utilisation.

<u>Explications sur le montage proposé</u>: le générateur de tension de f.e.m E_1 associé au potentiomètre P_1 permet de modifier la tension d'alimentation U_1 . (Remarque: l'indice «1» est nécessaire dans la mesure ou plusieurs grandeurs du même type pourraient être utilisées par la suite)

Une fois le schéma terminé, sélectionner «Allumer». **Une indication de «bon fonctionnement»** du circuit doit apparaître.Si un avertissement signalant que des connexions ne sont pas faites ou mal faites, il faut modifier ces dernières en cliquant avec l'outil **«pince»** en haut de la colonne «outils» et les refaire correctement. Après modification du circuit, il faut l'«allumer» de nouveau.

2.2 Choix des paramètres du circuit:

Dans la partie «Propriétés du circuit », en dessous du schéma, régler les paramètres du circuit:

 $P_1 = 5 k \Omega, R_1 = 1 k \Omega, L_1 = 0.64 H, C = 10 \mu F, E_1 = 10 V, f = 10 Hz$.

Le réglage du curseur du potentiomètre est effectué en choisissant la valeur de x_1 . Ici ,pour $x_1=1$, le curseur est «tout en bas» sur le dessin (et dans ce cas la tension U₁ est nulle.) **On pourra prendre x=0.5**.

Sélectionner le bouton «Oscilloscope». La tension u_1 apparaît en vert et l'intensité du courant i_1 en bleu. Ne garder que u_1 et i_1 . Pour supprimer E_1 cliquer sur le symbole E_1 puis sur **GND** (mise à la terre) pour l'éliminer.

2.3 Observations, mesures et calculs

2.3.1 Mesurer la période T de chaque grandeur sinusoïdale.

(l'utilisation du bouton curseur placé dans la marge du graphe permet de lire plus facilement les coordonnées des points choisis sur le graphe).

On obtient facilement T=100ms=0,1s.

Déduire la fréquence f à partir de T.

Comparer avec le paramètre f sélectionné au départ.

Constater que les deux grandeurs u_1 et i_1 ont même période mais que celles-ci sont décalées ou déphasées .

2.3.2 Mesure du décalage horaire entre les deux courbes puis du déphasage:

<u>i₁ atteint un maximum un court instant</u> Δt <u>avant u₁ dans le sens des t croissants. Nous dirons que i₁ est en avance horaire de Δt <u>sur u₁</u></u>

Si l'on associe à chaque grandeur sinusoïdale un vecteur tournant (*construction de Fresnel*), nous dirons que «à l'avance horaire : Δt lue sur l'oscilloscope correspond un décalage angulaire (ou déphasage) des deux vecteurs associés : $\Delta \theta$ » égal à:

 $\Delta \theta$ (rad)=2. $\pi \frac{\Delta t(ms)}{T(ms)}$

Remarque: At doit être lu de préférence sur l'axe des t. En considérant qu'une graduation représente 1cm:

$$\Delta t = 0.8 \text{ cm x}.20(\text{ms/cm}) = 16 \text{ ms} \Rightarrow \Delta \theta = 2.\pi \cdot \frac{16.10^{-5}}{0.1} \simeq 1 \text{ rad} = 57.6^{\circ}$$

2.3.3 Influence de la fréquence sur le déphasage:

Modifier la fréquence d'un facteur 10 soit f=100 puis 1000Hz. On obtient les graphes ci-dessous :

Pour N=100Hz, les deux grandeurs u_1 et i_1 sont quasiment en phase .Pour N=1000Hz, c'est u_1 qui est en avance de phase sur i_1 .

Conclusion: Le déphasage entre tension et courant dépend de la fréquence.

2.3.4 Influence des paramètres R,L et C du circuit:

Modifier les valeurs de R, L et C séparément, et constater que ces paramètres influencent également le déphasage

2.4 Notion d'impédance:

L'impédance Z du dipôle R.L.C est le quotient de la tension efficace sur l'intensité efficace.

$$Z \!=\! \frac{U_{\text{m}}}{I_{\text{m}}} \!=\! \frac{U_{\text{eff}}}{I_{\text{eff}}} (\text{unité:ohm})$$

Pour évaluer rapidement ce rapport, il est commode de demander la courbe Ueff= f(leff) pour différentes fréquences.

2.4.1 -Tracé de la courbe U_{1eff} = f(I_{1eff}):

Cliquer sur l'icône « courbe » dans le menu . Le graphe précédent est remplacé .

Cliquer sur«?» <u>en abscisse</u> et sélectionner « I₁ » parmi les différents paramètres proposés.

Cliquer sur«?» en ordonnée et sélectionner le paramètre «U1».

Enfin cliquer sur «**paramètres**» pour choisir la variable **x1**. On choisira de faire varier x1 entre 0 et 1. Cela revient à faire varier U_1 entre 0 et la valeur maximum. (*On comprend l'intérêt d'avoir mis un potentiomètre*

à l'entrée du circuit.).

Le choix de l'échelle en abscisse et en ordonnée s'effectue en cliquant sur la 1^{ère} graduation de l'axe. Un curseur apparaît: le déplacer pour modifier la valeur d'une graduation. Choisir l'échelle pour obtenir une courbe qui remplisse le cadre de la zone graphique.

2.4.2 Résultats

La courbe obtenue est en fait une droite.Cela signifie que Z est une constante pour une fréquence donnée. Pour évaluer Z, il suffit de calculer la pente de celle-ci. Pour faciliter la lecture des coordonnées des points de la courbe, utiliser le curseur proposé.

Pour **f=10hertz**, on obtient Z=10,5/(5,70.10⁻³)=1842 ohms.

Comparé à celle de R=1 kΩ.on constate que Z>R

Pour **f=100 Hz** (*choix correspondant à l'image ci-dessous*), $Z = 7,2/(7,05.10^{-3})=1021$ ohms valeur **proche de R** mais légèrement supérieure(souvenons nous qu'à cette fréquence u et i sont quasiment en phase!)

Et enfin avec **f** =1000Hz, Z=12.8/(3.15.10⁻³)=4063ohms Cette fois **Z** >>**R**.

A stade de l'étude il peut être souhaitable de faire l'interprétation de ces résultats en faisant l'étude théorique du circuit **R.L.C** en utilisant la représentation de Fresnel (ou la méthode complexe).

3. Courbe de résonance

Il s'agit de représenter l'intensité efficace en fonction de la fréquence .

Les paramètres du circuit sont inchangés (sauf pour x1), soit:

$P_1 = 5 k \Omega, R_1 = 1 k \Omega, L_1 = 0.64 H, C = 10 \mu F, E_1 = 10 V, x_1 = 0$

Le curseur étant placé au maximum « vers le haut » sur le dessin ,la tension $U_1 = E_1 = 10V$

Pour tracer cette courbe , il faut cliquer sur l'icône «courbe» , choisir en abscisse **la fréquence** et en ordonnée **l'intensité efficace l**₁.

Résultats : L'intensité passe par un maximum pour f=65Hz avec I_{1eff} =10mA .

Cette intensité peut être obtenue en réalisant le calcul: $I_{1eff} = \frac{U_{1eff}}{R} = \frac{10}{10^3} = 10^{-2} A = 10 \text{ mA}$ et nous avons vérifié que pour cette fréquence la tension u₁ et l'intensité i₁ sont en phase. Il y a **résonance d'intensité**. Une diminution de R augmente l'intensité maximum, la résonance devient plus aiguë.