DEVOIR EQUATION DIFFERENTIELLE

Exercice 1

Dans chacun des cas suivants, déterminer l'unique solution f de l'équation différentielle donnée telle que $f(x_0)=y_0$

$$y'=8y$$
 avec $x_0=-2$ et $y_0=-7$ $y'=2y$ avec $x_0=2$, $y_0=3$

$$y^{\prime}=-4y$$
 avec $x_{0}=-1$, $y_{0}=-5$ $y^{\prime}+7y=0$ avec $x_{0}=0$, $y_{0}=2$

$$3y^{\prime}+2y=0$$
 avec $x_0=1$, $y_0=3$ $y^{\prime}-9y=0$ avec $x_0=47$, $y_0=0$

Exercice 2:

Soit l'équation différentielle :

$$y' + y = x^2 \quad (E)$$

- 1. Démontrer qu'il existe une fonction polynôme du second degré $g: x \longmapsto ax^2 + bx + c$ solution de l'équation différentielle (E) sur \mathbb{R} . (On déterminera a, b et c).
- **2.** En déduire l'ensemble des solutions de (E) sur \mathbb{R} .
- 3. Déterminer la solution h de l'équation différentielle (E) qui vérifie h(0) = 1.