

Bilan énergétique d'un circuit électrique

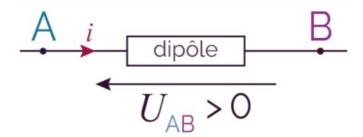
1. Points clés

- ightharpoonup L'énergie électrique est l'énergie consommée par un appareil électrique. Elle correspond à la puissance de l'appareil multiplié ar la durée d'utilisation ($E = Px\Delta t$).
- ➤ La puissance consommée par un appareil en courant continu est égale au produit de la tension U à ses bornes par l'intensité I du courant qui le traverse P = UxI
- Dans un circuit électrique, la puissance délivrée par le générateur est égale à la somme des puissances reçues par les récepteurs.
 Pgénérteurs = Précepteurs1 + Précepteurs2 +....
- \rightarrow Pour un conducteur ohmique, la puissance perdue par effet Joule est $P = R.l^2$.

2. La puissance électrique

2.1 Définition

La puissance électrique notée P, est la puissance de fonctionnement prévue par le constructeur.


Exemples : - un aspirateur a généralement une puissance de 1000W

- une bouilloire a une puissance de 2000W

La puissance consommée par un appareil en courant continu est égale au produit de la tension U à ses bornes par l'intensité I du courant qui le traverse avec :

P = UxI

- P = puissance électrique en watt [W]
- U = tension aux bornes du récepteur en Volt [V]
- I = intensité du courant électrique qui traverse le récepteur, en ampère [A]

2.2 Puissance et énergie

La puissance est une indication de l'énergie délivrée ou reçue par un dipôle par unit é de temps.

Elle traduit la rapidité avec laquelle le transfert d'énergie se produit.

L'expression de la puissance P d'un appareil qui fonctionne au cours du temps Δt est la suivante :

$$P = \frac{E}{\Delta t}$$

- E = énergie en joule [J]

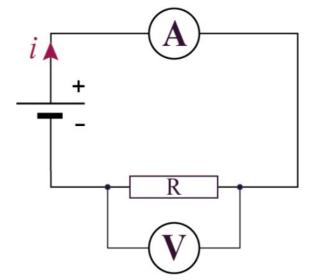
- P = la puissance en watt [W]

- Δt = la durée en seconde [s]

Exemples

Une lampe de puissance P = 75W consomme plus d'énergie qu'une lampe de 40W pendant la même durée de fonctionnement Δt . La lampe plus puissante est plus lumineuse qu'une lampe moins puissante.

2.3 Cas des conducteurs ohmiques


On cherche à exprimer la puissance dissipée par un conducteur ohmique . On applique la formule :

 $P = U \times i$. Or un conducteur ohmique de résistance R obéit à la loi d'Ohm $U = R \times i$.

On obtient donc la relation suivante : $P = R \times i^2$.

P : puissance en watt [W] R : résistance en ohm $[\Omega]$

i : intensité de courant en ampère [A]

La puissance dissipée par la résistance est libérée sous forme de chaleur c'est l'effet Joule.

3- L'énergie électrique

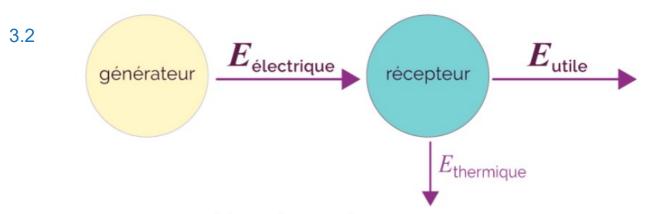
3.1 Échange d'énergie dans un circuit

Les circuits électriques comportent deux types de dipôles :

- les générateurs : pile, générateur de tension continue ou alternative, etc.
- les récepteurs : lampe, moteur, résistance , électrolyseur, etc.

Dans un circuit électrique traversé par un courant, les dipôles échangent de l'énergie.

Les générateurs fournissent de l'énergie électrique,


Les récepteurs reçoivent l'énergie électrique et la transforment en énergie utile:

- énergie mécanique pour un moteur
- énergie lumineuse pour une lampe
- énergie calorifique pour une résistance
- énergie chimique pour un électrolyseur, etc.

Ils transforment aussi en énergie thermique l'énergie électrique sous forme de pertes de chaleur.

Échange d'énergie dans un circuit électrique

Expression de l'énergie

L'énergie électrique notée E , reçue ou délivrée par un dipôle de puissance P pendant la durée Δt s'écrit de la manière suivante :

 $E = P \times \Delta t$

- E = énergie en joule [J]
- P = puissance en watt [W]
- Δt = la durée en seconde [s]

Or P = U x i , on peut donc exprimer l'énergie délivrée ou reçue par un dipôle en fonction de la tension à ses bornes et du courant traversant le circuiit. $E = U \times i \times \Delta t$.

Remarque : l'énergie s'exprime en wattheure [Wh] lorsque le temps est exprimé en heure.

3.3 Méthode pour calculer l'énergie

Pour évaluer l'énergie électrique consommée par un appareil fonctionnant en courant continu (lampe, radiateur, etc.) il faut procéder deux étapes.

Étape 1 : Calculer la puissance

On détermine tout d'abord la puissance électrique P consommée par l'appareil. On mesure :

- l'intensité i qui parcourt l'appareil à l'aide d'un ampèremètre branché en série dans le circuit.
- La tension U aux bornes de l'appareil avec un voltmètre branché en dérivation.

On utilise ensuite la relation $P = U \times i$ pour calculer la puissance.

Étape 2 : Calculer l'énergie électrique

Pour déterminer l'énergie E consommée par l'appareil , on multiplie la puissance P précédemment calculée par la durée d'utilisation Δt .

On utilise la relation $E = P \times \Delta t$.

Exemple

On souhaite mesurer l'énergie électrique d'une lampe. Pour cela, on la fait fonctionner sous une tension continue pendant 6mn. On mesure la tension U à ses bornes et l'intensité i du circuit. On relève alors la tension U = 6V et l'intensité i = 25mA = 0,025A.

La puissance électrique P absorbée par la lampe est : P = U x i = 6 x 0,025 = 0,15 W

Le temps de fonctionnement de la lampe est de Δt = 6mn = 360s.

L'énergie électrique consommée par la lampe est : $E = P \times \Delta t = 0.15 \times 360 = 54 \text{ J}$.

> Cette lampe a consommée une énergie de 54J en 6mn.

4. Le bilan de puissance dans un circuit

4.1 Principe

Dans un circuit électrique, la puissance délivrée par le générateur est égale à la somme des puissances reçues par les récepteurs.

Pgénérteurs = Précepteurs1 + Précepteurs2 +....

4.2 Exemple

On considère un circuit en série qui comporte une lampe et une résistance alimentée par un générateur.

On cherche à effectuer un bilan de puissance dans ce circuit. On pose :

- U la tension aux bornes du générateur
- U₁ la tension aux bornes de la résistance
- U₂ la tension aux bornes de la lampe

La loi des mailles nous indique que U = U₁ + U₂
Le circuit est traversé par le même courant
d'intensité i , on multiple la relation précédente

pari:
$$U \times i = U_1 \times i + U_2 \times i$$

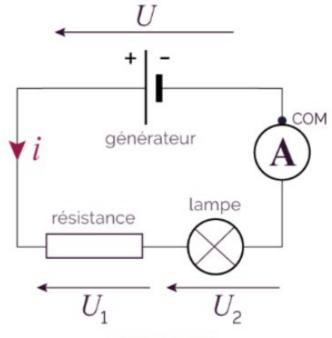


Schéma du circuit

Or , la puissance délivrée par le générateur s'exprime par P = U x i

la puissance reçue par la lampe est P₁ = U₁ x i

la puissance reçue par la résistance est $P_2 = U_2 x i$

On a donc $P = P_1 + P_2$