

Dérivation d'une fonction

1. Dérivabilité en un point - Nombre dérivé

1.1 Définitions

Soit f une fonction définie sur un intervalle ouvert I contenant x₀. On dit que f est dérivable en x₀ si la

fonction $x \mapsto \frac{f(x) - f(x_0)}{x - x_0}$ admet une limite finie en x_0 . Cette limite, lorsqu'elle existe, est appelée nombre

dérivé de f en x_0 ; on la note $f'(x_0)$

On a donc
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 ou, en posant $x = x_0 + h$, $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$

Exemple
$$f(x) = x^2 + x - 1$$

f est-elle dérivable en x₀=1?

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{(x^2 + x - 1) - (1 + 1 - 1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{x^2 + x - 2}{x - 1}$$

$$= \lim_{x \to 1} \frac{(x - 1)(x + 2)}{x - 1}$$

$$= \lim_{x \to 1} (x + 2)$$

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 3$$

On a une limite finie, donc f est dérivable en 1 et f'(1) = 3..

1.2 Définition équivalente

f est dérivable en x₀ si pour tout h tel que h appartient à I, on peut écrire

$$f(x_0 + h) = f(x_0) + ah + h\phi(h)$$
 avec $\lim_{h\to 0} \phi(h) = 0$.

Avec cette formulation de la définition, le réel a est le nombre dérivé de f en x₀

Démonstration:

Soit a un réel quelconque. Considérons la fonction ϕ définie par $\begin{cases} \phi(x) = \frac{f(x_0 + h) - f(x_0)}{h} - a \text{ si } x \neq 0 \\ \phi(0) = 0 \end{cases}$

On a alors pour tout h tel que x_0 +h appartient à I, $f(x_0 + h) = f(x_0) + a.h + h\phi(h)$

$$\lim_{h\to 0} \phi(h) = 0 \text{ \'equivaut \`a } \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = a$$

Ce qui établit l'équivalence.

L'écriture $f(x_0 + h) = f(x_0) + a.h + h\varphi(h)$ est appelée développement limité d'ordre 1 de f au point x_0 .

Remarque

Dès que l'on rencontre une écriture $f(x_0 + h) = \alpha + \beta h + h \phi(h)$ avec $\lim_{h \to 0} \phi(h) = 0$ on peut conclure que :

$$\alpha = f(x_0)$$
 , $\ \mbox{\it que f est dérivable en } x_0 \mbox{\it et } \beta = f'(x_0)$

$$f(x_0 + h) = f(x_0) + f'(x_0).h + h\phi(h) \text{ donc } f(x_0 + h) - f(x_0) - f'(x_0).h = h\phi(h)$$

Et lorsque h tend vers 0, $\varphi(h)$ tend aussi vers 0 ; ce qui fait que lorsque h est très proche de 0, alors $f(x_0 + h)$ est aussi très proche de $f(x_0) + f'(x_0).h$

L'erreur commise en prenant $f(x_0) + f'(x_0)$.h comme valeur approchée de $f(x_0 + h)$ est

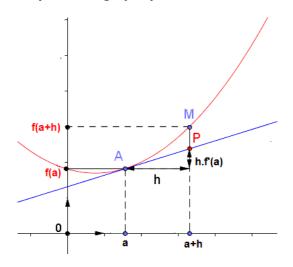
$$h\phi(h) = f(x_0 + h) - f(x_0) - f'(x_0).h$$

En utilisant la variable x, le développement limité de f en a s'écrit :

$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + (x - x_0) \varphi(x)$$

La fonction $\mathbf{x} \mapsto f(x_0) + f'(x_0) \cdot (\mathbf{x} - \mathbf{x}_0)$ est la meilleure approximation affine de f au voisinage de x_0

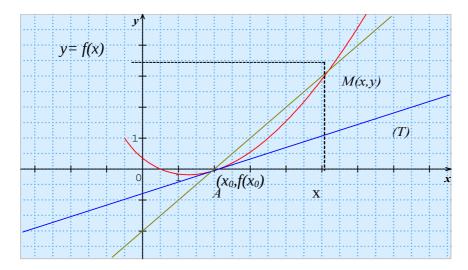
Interprétation graphique :



|h.φ(h)| représente la distance PM. Plus M se rapproche de A, plus la distance devient très petite

Date de version : Auteur : Équipe de maths 2/5

1.3 Interprétation géométrique du nombre dérivé



Soit (ζ_f) la courbe représentative d'une fonction f et $A(x_0; f(x_0))$ et M(x, f(x)) deux points de (ζ_f) .

Considérons la droite (AM) ; elle a pour pente (ou coefficient directeur) $\frac{f(x) - f(x_0)}{x - x_0}$

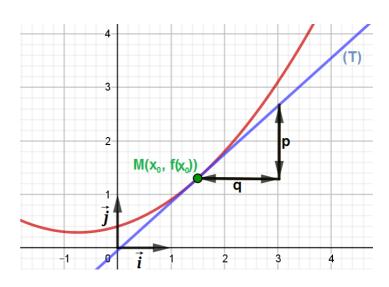
Si on fait tendre M vers A, x va tendre vers x_0 et la droite (AM) va tendre vers une position limite (T) appelée droite tangente à la courbe au point A, et sa pente tend vers $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x)$ (pente de (T)) : c'est la tangente de l'angle que fait la droite (T) avec l'axe des abscisses.

Considérons un point M(x,y) de (T), on doit avoir : $\tan \alpha = f'(x_0) = \frac{y - f(x_0)}{x - x_0}$

ou $y = f'(x_0)(x - x_0) + f(x_0)$ c'est l'équation de la tangente (T) à la courbe (ζ_f) au point $A(x_0; f(x_0))$

Remarques

• Si
$$f'(x_0) = \frac{p}{q}$$
, alors



- Si $f'(x_0) = 0$, on a une tangente parallèle à l'axe des abscisses (tangente horizontale).
- Si $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = \infty$, f n'est pas dérivable en x_0 , on a une tangente parallèle à l'axe des ordonnées
- Si $f'_d(x_0) \neq f'_g(x_0)$, (f n'est pas dérivable en x_0) on a deux demi tangentes à gauche et à droite de M_0 , de pentes respectives $f'_g(x_0)$ et $f'_d(x_0)$. On dit que l'on a un point anguleux.

1.4 Dérivabilité à gauche - dérivabilité à droite

On dit que f est dérivable à droite en x_0 (respectivement à gauche) si la fonction $x \mapsto \frac{f(x) - f(x_0)}{x - x_0}$ admet

une limite finie quand x tend vers x_0^+ (respectivement vers x_0^{-1}

Les limites lorsqu'elles existent, sont appelées respectivement nombre dérivé à gauche et nombre dérivé à droite de x_0 , et notés $f'_g(x_0)$ et $f'_d(x_0)$

$$f_{d}'(x_{0}) = \lim_{x \to x_{0}^{+}} \frac{f(x) - f(x_{0})}{x - x_{0}} \text{ et } f_{g}'(x_{0}) = \lim_{x \to x_{0}^{-}} \frac{f(x) - f(x_{0})}{x - x_{0}}, \text{ lorsqu'elles sont finies}$$

Théorème

Pour qu'une fonction f soit dérivable en x_0 ; il faut et il suffit que les nombres dérivés à gauche et à droite soient finis et égaux, c'est-à-dire si :

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$
 (finie)

2. Dérivabilité sur un intervalle

2.1 Définitions

f est dérivable sur a,b si elle est dérivable en chaque point de cet intervalle.

f est dérivable sur [a,b] si elle est dérivable sur]a,b[, dérivable à gauche en b et dérivable à droite en a.

Théorème

Si f est dérivable en x_0 , elle est continue en x_0 .

Démonstration : f est dérivable en x₀ donc

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \text{ est un réel } I$$

Date de version : Auteur : Équipe de maths 4/5

Posons
$$\begin{cases} \varphi(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - 1 \text{ si } x \neq x_0 \\ \varphi(x_0) = 0 \end{cases}$$

On a
$$f(x) = [\phi(x) + 1](x - x_0) + f(x_0)$$

Donc

$$\text{Or} \ \lim_{x \to x_0} \ f(x_0) = f(x_0) \quad , \ \lim_{x \to x_0} \ \phi(x)(x-x_0) = 0 \ \text{et} \ \lim_{x \to x_0} \ I(x-x_0) = 0$$

Donc
$$\lim_{x\to x_0} f(x) = f(x_0)$$
. D'où la continuité de f en 0.

Date de version : Auteur : Équipe de maths 5/5