

Calculs barycentriques - Fonction vectorielle de Leibnitz

1. Lignes de niveau

On cherche l'ensemble (E) des points M vérifiant une relation donnée.

Soit A et B deux points fixes de P et k un réel donné.

1. AM = BM l'ensemble (E) est médiatrice de [AB]

2. AM = k k < 0 l'ensemble (E) est vide

 $k = 0 \quad E = \{A\}$

k > 0 I'ensemble E est le cercle de centre A est de rayon k.

3. AM.BM = 0 l'ensemble (E) est le cercle de diamètre AB.

 $\rightarrow \rightarrow$ 4. AM. u = k

Soit B le point de P tel que $\overrightarrow{AB} = \overrightarrow{u}$, et H le projeté orthogonal de M sur AB. Le point M appartient à (E) si $\overrightarrow{AB} = \overrightarrow{AB} =$

L'ensemble (E) est la droite orthogonale à AB au point H défini par $\overline{AH} = \frac{k}{\overline{AB}}$.

Cas particulier : L'ensemble (E) des points M vérifiant la relation \overrightarrow{AM} . $\overrightarrow{u} = 0$ est la droite orthogonale à AB en A.

2. Fonction vectorielle de Leibniz

2.1 Définitions

Considérons un ensemble fini de n points fixes A_1, \ldots, A_n affectés respectivement de coefficients $\lambda_1, \ldots, \lambda_n$. On appelle système de points pondérés (ou massifs) l'ensemble de couples { $(A_1, \lambda_1), (A_2, \lambda_2), \ldots, (A_n, \lambda_n)$ }.

Considérons l'application de P dans V, qui, au point M, associe le vecteur :

$$\overrightarrow{f(M)} = \lambda_1 \overrightarrow{MA_1} + \lambda_2 \overrightarrow{MA_2} + ... + \lambda_n \overrightarrow{MA_n} = \sum_{i=1}^n \lambda_i \overrightarrow{MA_i}$$

Cette application s'appelle fonction vectorielle de Leibniz du système { (A1, □1), (A2, □2), ..., (An, □n)}.

Soit O un point arbitraire de P, $\overrightarrow{MA_i} = \overrightarrow{MO} + \overrightarrow{OA_i}$ pour tout i.

On a alors
$$\overrightarrow{f(M)} = \sum_{i=1}^{n} \lambda_i (\overrightarrow{MO} + \overrightarrow{OA}_i) = \sum_{i=1}^{n} \lambda_i \overrightarrow{OA}_i + \left(\sum_{i=1}^{n} \lambda_i\right) \overrightarrow{MO}$$

2.2 Problème

L'ensemble (E) des points M tels que $\overrightarrow{f(M)} = \overrightarrow{0}$ contient-il un point et un seul ?

Résolution : $\overrightarrow{f(M)} = \overrightarrow{0}$ si et seulement si $\overrightarrow{f(O)} + \sum_{i=1}^{n} \lambda_i \overrightarrow{MO} = \overrightarrow{0}$.

L'ensemble (E) tel que $\overrightarrow{f(M)} = \overrightarrow{0}$ est l'ensemble des points M tels que $\overrightarrow{f(O)} = \sum_{i=1}^{n} \lambda_i \overrightarrow{OM}$.

Discussion

$$1^{er}$$
 cas : Si $\sum \lambda_i = 0$ alors $\overrightarrow{f(M)} = \overrightarrow{f(O)} = cte$.

- si $\overrightarrow{f(O)} \neq \overrightarrow{0}$, l'ensemble (E) est vide.
- si $\overline{f(O)} = \overline{0}$, (E) contient plus d'un point.

$$2^{\text{ème}} \text{ cas} : \text{Si } \sum \ \lambda_i \neq 0 \text{ , alors } \overrightarrow{f(O)} = \sum_{i=1}^n \ \lambda_i \ \overrightarrow{OM} \text{ si et seulement si } \overrightarrow{OM} = \frac{1}{\sum \lambda_i} \overrightarrow{f(O)} = \frac{\sum \lambda_i \ \overrightarrow{OA_i}}{\sum \lambda_i}$$

L'ensemble E des points M tels que $\overrightarrow{f(M)} = \overrightarrow{0}$ contient un élément G et un seul et $\sum \lambda_i \overrightarrow{GA_i} = \overrightarrow{O}$

Théorème et définition

 $(A_i,\,\lambda_i)_{i=1,...,n}$ est un système de points pondérés

- Si $\sum_{\lambda_i \neq 0} \lambda_i \neq 0$, il existe un point G unique tel que $\sum_{\lambda_i \neq 0} \lambda_i \overrightarrow{GA_i} = \overrightarrow{O}$. Ce point G est appelé barycentre de (A_i, λ_i) $_{i=1,...n}$.
- Si $\sum_{i} \lambda_{i} = 0$, le système (A_i, λ_{i}) _{i=1,...,n} n'a pas de barycentre et pour tout point M, $\sum_{i} \lambda_{i} \overrightarrow{MA_{i}} = cte$.

Dire que G est le barycentre de $(A_i, \lambda_i)_{i=1,..,n}$ équivaut à dire que, pour tout point $O, \sum_i \lambda_i \overrightarrow{OA_i} = \sum_i \lambda_i \overrightarrow{OA_i}$.

Dans le cas où les coefficients λ_i sont égaux, le barycentre est appelé isobarycentre.

2.3 Propriétés du barycentre

- Commutativité : le barycentre G ne dépend pas de l'ordre des points.
- Homogénéité : le barycentre G reste inchangé si l'on multiplie tous les coefficients par un réel non nul.
- Associativité : le barycentre G est inchangé si l'on remplace p points $A_1, ..., A_p$ par leur barycentre G' affecté de la somme des coefficients $(\lambda_1 + ... + \lambda_p)$, cette somme n'étant pas nulle.

$$(\lambda_1\overrightarrow{GA_1}+...+\lambda_p\overrightarrow{GA_p})+(\lambda_{p+1}\overrightarrow{GA_{p+1}}...+\lambda_n\overrightarrow{GA_n})=\vec{0}$$

Comme $\lambda_1+\ldots+\lambda_p\neq 0$, il existe un point G' barycentre de { $(A_1,\,\lambda_1),\,\ldots\,(A_p,\,\lambda_p)$ }, alors

$$(\lambda_1 + ... + \lambda_p)\overrightarrow{GG'} + (\lambda_{p+1}\overrightarrow{GA_{p+1}}... + \lambda_n\overrightarrow{GA_n}) = \overrightarrow{0}$$

2.4 Coordonnées du barycentre

Le plan P étant rapporté à un repère. Le point A_i a pour coordonnées $(x_i,\ y_i)$ dans ce repère. Soit G le barycentre du système $(A_i,\ \lambda_i)$, $i=1,\dots,n$. On a :

$$\overrightarrow{OG} = \frac{\sum \lambda_i \ \overrightarrow{OA_i}}{\sum \lambda_i} \ , \ \ d'où \qquad x_G = \frac{\sum \lambda_i \ x_i}{\sum \lambda_i} \qquad \qquad \text{et} \qquad y_G = \frac{\sum \lambda_i \ y_i}{\sum \lambda_i} \ .$$

Remarque : Soit z_i l'affixe de A_i , l'affixe du barycentre G est $z_G = \frac{\sum \lambda_i \ z_i}{\sum \lambda_i}$.

3/3

2.5 Coordonnées barycentriques

D est la droite définie par deux points A et B du plan P.

Relativement au repère (A , AB), la droite D est l'ensemble des points M tels que AM = tAB, $t \in IR$, i.e. $(1-t)\overrightarrow{MA} + t\overrightarrow{MB} = 0$.

Pour tout point M de la droite D, M est le barycentre du système { (A, 1-t) ; (B,t)}. Réciproquement : à tout couple (α, β) , $\alpha + \beta = 1$, correspond le point M de la droite D barycentre de { (A, α), (B, β) }.

Définition

Le couple unique (α, β) , $\alpha + \beta = 1$ tel que le point M soit le barycentre de $\{(A, \alpha), (B, \beta)\}$ est appelé couple normé de coordonnées barycentriques de M relativement au repère (A, AB).

2.6 Exemples de construction géométrique du barycentre

- a) Construire le barycentre du système de points pondérés { (A, -2), (B, 1)}
- a) Construire le barycentre du système de points pondérés { (A, 2) , (B , -1) , (C , 3) } On utilise la propriété d'associativité du barycentre.

Date de version : septembre 2017 Auteur : Ivo Siansa