

Variable aléatoire

1. Définition d'une variable aléatoire

Toute mesure d'une grandeur dont les valeurs dépendent du hasard est dite variable aléatoire (en abrégé "v.a."). C'est donc une application de l'univers des possibles Ω sur IR.

Exemple 1 : Une plante peut avoir 0 à 4 fleurs avec les probabilités suivantes :

Nombre de fleurs	0	1	2	3	4
probabilité	1/4	<u>1</u> 8	<u>1</u> 8	<u>3</u>	<u>1</u>

Le nombre de fleur est une variable aléatoire X, qui prend la valeur 0 avec la probabilité $\frac{1}{4}$, la valeur 1 avec la probabilité $\frac{1}{8}$,...

D'une autre manière, une variable aléatoire (ou *aléa numérique*) X définie sur Ω est une application qui à chaque élément de Ω fait correspondre un nombre réel.

L'ensemble des valeurs possibles de X, noté $X(\Omega) = \{ x_1, x_2, ..., x_n \}$, est appelé *univers image* de Ω .

2. Loi de probabilité de X (ou distribution)

C'est la fonction qui à tout élément x de $X(\Omega)$ fait correspondre la probabilité que X prenne cette valeur x.

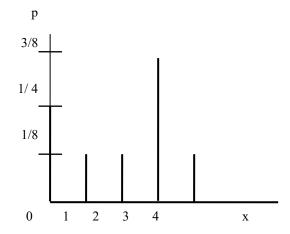
On la note $x \rightarrow p(X=x)$

Il est commode de présenter cette loi de probabilité sous forme d'un tableau :

X	X ₁	X 2	•••	Xn
p(X = x)	p ₁	p ₂		p _n

Auteur: Ivo Siansa

Représentation graphique de l'exemple 1.



3. Fonction de répartition

Dans le cas le l'exemple précédent, on peut se poser les questions suivantes : Quelle est la probabilité pour qu'une plante à au moins 1 fleur ? au moins 2 fleurs ? etc. La connaissance de la fonction de répartition permet de répondre à ces questions.

Définition

Soit une variable X définie sur un univers Ω muni d'une probabilité p.

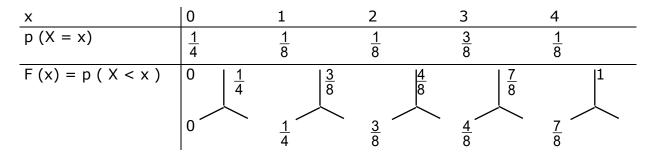
La fonction de répartition F de X est la fonction définie pour tout réel x par :

$$F(x) = p (X \le x)$$

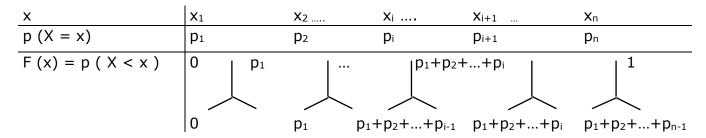
La fonction de répartition est encore appelée fonction cumulative ou probabilité intégrale.

Remarque : La fonction de répartition est définie par intervalle.

Reprenons le tableau de la loi de probabilité de l'exemple 1 et complétons-le par les valeurs de F(x)

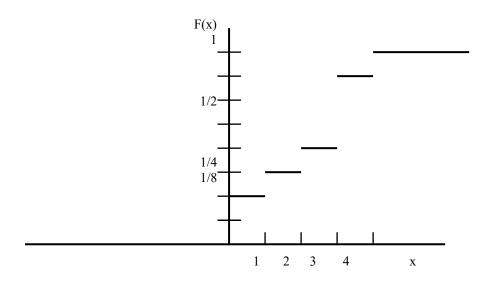


Généralisation: Supposons que la v.a. X prend les valeurs x_1 , x_2 , ..., x_n avec les probabilités p_1 , p_2 , ..., p_n . La fonction de répartition est représentée par le tableau :



Notons que dans l'intervalle [x_i ; x_{i+1} [la probabilité de l'événement (X < x_i) est : $p(X < x_i) = p_1 + p_2 + ... + p_{i-1}$.

Représentation graphique de F



Propriétés de la fonction de répartition

- F est une fonction escalier
- F est une fonction croissante
- A partir de F on peut retrouver la loi de probabilité de X.

Exemple : p(X = 3) = F(3) - F(2).

4. Espérance mathématique

Définition

Soit une v.a. X prenant les valeurs x_1 , x_2 , ..., x_n avec les probabilités p_1 , p_2 , ..., p_n . On appelle espérance mathématique de X le nombre E(X) défini par :

$$E(X) = x_1 p_1 + x_2 p_2 + ... + x_n p_n$$
 où $p_i = p(X = x_i)$.

Exemple: Reprenons l'exemple précédent.

$$E(x) = 0.\frac{1}{4} + 1.\frac{1}{8} + 2.\frac{1}{8} + 3.\frac{3}{8} + 4.\frac{1}{8} = 2$$

On peut donc espérer en moyenne avoir une plante à 2 fleurs si on prend au hasard une plante.

5. Variance - écart type

L'espérance mathématique donne une indication simple sur la v.a. Des v.a. très différentes peuvent avoir la même espérance mathématique.

Par exemple les deux v.a. X et Y dont les lois de probabilité sont respectivement :

Auteur: Ivo Siansa

Х	0	1	2
p(X=x)	<u>2</u> 7	<u>14</u> 7	<u>1</u>

У	-1	0	1	2	3
p(Y=y)	<u>6</u> 14	1/14	<u>1</u>	1/14	<u>5</u>

On vérifie que $E(X) = \frac{6}{7}$ et $E(Y) = \frac{6}{7}$. X et Y ont la même espérance mathématique, mais pour Y, on obtient plus souvent des résultats éloignés de $\frac{6}{7}$. On dit que Y est plus dispersée que la variable X.

En Statistique, la dispersion se mesure par la variance qui est la moyenne pondérée de la série $(x_i - \bar{x})^2$.

De façon analogue, en Probabilités, la variance est l'espérance mathématique de [X - E(X)]²

La variance d'une variable aléatoire X est définie par :
$$V(X) = E[(X - E(X))^2] = \sum_{i=1}^{n} p_i (x - E(X))^2$$

On utilise souvent l'écart type σ (X) qui est la racine carrée de la variance. L'écart type d'une v.a. X est défini par : σ (X) = $\sqrt{V(X)}$.

Autre expression de la variance

On démontre que la variance d'une v.a.
$$X$$
 est : $V(X) = E(X^2) - [E(X)]^2 = \sum_{i=1}^{n} p_i x_1^2 - [E(X)]^2$

Exemple : calculer les variances et les écarts type des v.a. X et Y de l'exemple précédent.

Date de version : septembre 2017 Auteur : Ivo Siansa