

Isométries planes - déplacements

1. Définition - Propriétés

Un déplacement est une isométrie qui conserve les angles orientés.

Propriétés

- Les déplacements sont les translations et les rotations.
- Un déplacement laissant invariant un point est une rotation.
- La composée de deux déplacements est un déplacement.

2. Compositions de déplacements

- La composée de 2 translations est une translation.
- La composée d'une translation et d'une rotation d'angle θ est une rotation d'angle θ .
- Composée de deux rotations.

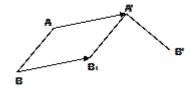
Théorème : Soient 2 rotations r_1 et r_2 d'angles respectifs θ_1 et θ_2 .

- si $\theta_1 + \theta_2 = 0 + k.2\pi$ alors r_1 o r_2 est une translation.
- si $\theta_1 + \theta_2 \neq 0 + k.2\pi$ alors r_1 o r_2 est une rotation d'angle $\theta_1 + \theta_2$

3. Détermination d'un déplacement

- a) f est un déplacement $A,B \in P$ et A'=f(A), B'=f(B), on a A'B'=AB.
- b) réciproque : soit A, B, A', B' tels que $A \neq B$ et A'B'=AB.

Montrons que qu'il existe un unique déplacement f tel que f(A) = A' et f(B) = B'.



Existence : soit $t:A \to A'$ et on pose $B_1 = t(B)$ ce qui implique $A'B_1 = AB = A'B'$.

Alors il existe une rotation r de centre A' tel que $r(B_1) = B'$.

f=r o t est un déplacement et f(A) = A et f(B) = B'.

Unicité : supposons qu'il existe un déplacement g distinct de f tel que g(A) = A' et g(B) = B'. On a f^{-1} o g(A) = A et f^{-1} o g(B) = B, ce qui implique f^{-1} o g(B) = B d'où g(B) = B' un antidéplacement. Ce qui est contradictoire

Théorème

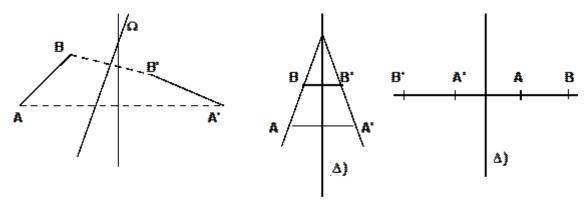
A, B, A', B' sont 4 points tels que $A \neq B$ et AB = A'B'. Il existe un déplacement est un seul transformant A en A' et B en B'. Ce déplacement est :

- la translation de vecteur \overrightarrow{AA} lorsque $\overrightarrow{AB} = \overrightarrow{A'B'}$.
- une rotation d'angle $(\overrightarrow{AB}, \overrightarrow{A'B'})$ lorsque $\overrightarrow{AB} \neq \overrightarrow{A'B'}$.

Auteur: Ivo Siansa

Construction du centre Ω de la rotation.

- Dans le cas général, le centre Ω est l'intersection des médiatrices de [AA'] et de [BB'].
- Si [AA'] et [BB'] on la même médiatrice (Δ), on montre que Ω est l'intersection de (AB) et (Δ)



Exemple : Détermination de la composée r o r' où $r = r(A; \frac{\pi}{3})$ et $r' = r'(B; \frac{\pi}{6})$.

Pour trouver le centre Ω , on écrit r et r' comme composées de réflexions.

Auteur: Ivo Siansa

4. Expression analytique

f est un déplacement qui transforme M(x,y) en M'(x',y'). L'expression analytique de f est de la forme :

$$\begin{cases} x' = ax - by + p \\ y' = bx + ay + q \end{cases} avec a^2 + b^2 = 1$$