

Calcul intégral : applications

1. Calcul d'aires

Soit f une fonction continue, croissante et positive sur un intervalle [a;b]

Et soit x_0 un élément de [a;b] et h un réel positif tel que x_0 +h appartient à [a;b].

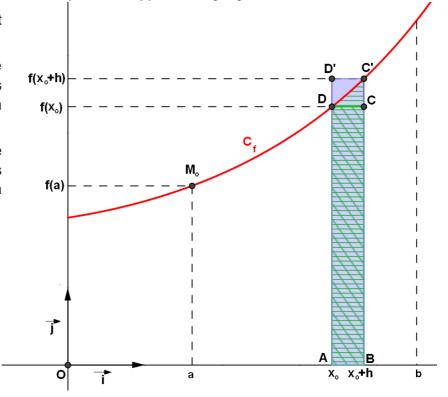
Considérons les rectangles ABCD et A'B'C'D'.

On va appeler $A(x_0)$ l'aire du domaine délimité par la courbe C_f , l'axe des abscisses, et les droites d'équations x = a et $x = x_0$.

 $A(x_0+h)$ est donc l'aire du domaine délimité par la courbe C_f , l'axe des abscisses, et les droites d'équations x = a et $x = x_0+h$.

La partie colorié en ____ a pour aire :

Cette aire est encadrée par les aires des rectangles ABCD, colorié en et ABC'D', colorié en



On a:

 $A(x_0+h)-A(x_0)$

$$Aire(ABCD) \le A(x_0 + h) - A(x_0) \le Aire(ABC'D')$$
.

Comme Aire(ABCD) = $h.f(x_0)$ et Aire(ABCD) = $h.f(x_0 + h)$, on a

 $h.f(x_0\,) \leq A(x_0\,+h) - A(x_0\,) \leq h.f(x_0\,+h)\,. \ \text{D'où en divisant par h, qui est un nombre positif,}$

$$f(x_0) \le \frac{A(x_0 + h) - A(x_0)}{h} \le f(x_0 + h).$$

La fonction f étant continue, on a $\lim_{h\to 0} f(x_0 + h) = f(x_0)$.

Le théorème sur les encadrements des limites nous donne $\lim_{h\to 0}\frac{A(x_0^-+h)-A(x_0^-)}{h}=f(x_0^-)$.

Donc la fonction A est dérivable à droite en x_0 . A $'_d(x_0) = f(x_0)$.

De la même façon, on montrer que A est dérivable à gauche en x_0 et $A'_g(x_0) = f(x_0)$

Ce qui nous permet de dire que la fonction A est dérivable en x_0 et que $A'(x_0) = f(x_0)$.

A est donc une primitive de f.

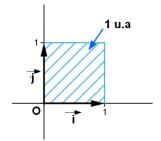
De plus $A(a) = \int_a^a f(t)dt = 0$, donc A est la primitive de f qui s'annule en a. Ainsi $A(x) = \int_a^x f(t)dt$

En admettant que ce résultat, établi pour une fonction continue, positive et croissante peut se généraliser à toute fonction continue, on a le théorème suivant :

Théorème

Soit f une fonction continue et positive sur un intervalle [a ; b] et C la courbe de f dans un repère orthonormé.

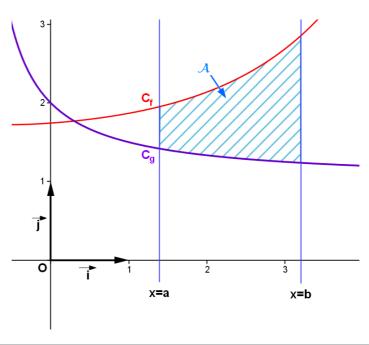
Alors l'aire du domaine délimité par la courbe C de f, l'axe des abscisses, et les droites x = a et x = b, est donnée par $A = \int_a^b f(t)dt$ u.a. (1 u.a = unité d'aire)





Plus généralement, si f et g sont deux fonction continues sur [a ; b], telles que $g(x) \le f(x)$ pour tout x de [a ; b], alors l'aire du domaine délimité par la courbe de f, la courbe de g, et les droites x = a et x = b, est donnée par

$$A = \int_a^b [f(t) - g(t)] dt \text{ u.a}$$



Auteur: Équipe maths

Si $g(x) \le 0$ pour tout x de [a;b], on pose f(x) = 0 pour tout x de [a;b], et on a $f(x) - g(x) = 0 - g(x) = -g(x) \ge 0$

En utilisant le résultat précédent, l'aire du domaine délimitié par la courbe de g, l'axe des abscisses, (courbe de f) et les droites d'équations x = a et x = b est, en u.a. :

$$A = \int_{a}^{b} [0 - g(t)]dt = \int_{a}^{b} [-g(t)]dt = -\int_{a}^{b} g(t)dt$$

Comme
$$g(x) \le 0$$
 $\int_a^b g(t)dt \le 0$ et $-\int_a^b g(t)dt \ge 0$

Et
$$A = -\int_a^b g(t)dt = \left| \int_a^b g(t)dt \right|$$

Résumons

- Si
$$f(t) \ge 0$$
 pour tout t de [a;b] alors $\int_a^b f(t)dt \ge 0$ et $A = \int_a^b f(t)dt = \left| \int_a^b f(t)dt \right|$

-Si
$$f(t) \le 0$$
 pour tout t de [a;b], alors $\int_a^b f(t)dt \le 0$ et $A = -\int_a^b f(t)dt = \left| \int_a^b f(t)dt \right|$

Ainsi

Théorème

Si f est une fonction continue et garde un signe constant sur un intervalle [a ; b] et C la courbe de f dans un repère orthonormé

Alors l'aire du domaine délimité par la courbe C de f, l'axe des abscisses, et les droites x = a et x = b, est donnée par $A = \left| \int_a^b f(t) dt \right|_{u.a.}$

Si f est alternativement positive et négative sur [a ; b], on divise l'intervalle [a;b] en sous-intervalles sur chacun desquels f garde un signe constant. On calcule l'aire sur chacun des sous-intervalles et et on fait la somme de ces aires.

Ainsi, l'aire des domaines hachurés est donnée, en u.a, par : $A = \left| \int_a^c f(t) dt \right| + \left| \int_c^d f(t) dt \right| + \left| \int_d^e f(t) dt \right| + \left| \int_e^b f(t) dt \right|$

