

Application de l'effet Joule

Les applications de l'effet joule dans le chauffage

Le principe est que des appareils comme des radiateurs électriques, des plaques de cuisson ou encore un grille-pain utilisent la chaleur produite par l'**effet joule** pour fonctionner sous forme de rayonnement ou de convection. Leur rendement global est donc optimisé.

L'essentiel

Un dipôle, de résistance r, traversé par un courant électrique, d'intensité I, transforme tout ou une partie de l'énergie qu'il reçoit en énergie thermique. Le dipôle s'échauffe : c'est l'effet Joule.

	Énergie	Puissance
Notation	W _J	Pj
Expression	$W_{\rm J} = r I^2 \Delta t$	$P_{\rm J} = r I^2$

L'effet Joule a :

- des avantages : il peut être recherché pour chauffer les constituants au contact du dipôle (rôle d'un radiateur, d'un fer à repasser, d'un sèche-cheveux ...) ;
- des inconvénients : il peut provoquer un échauffement trop important du dipôle entraînant sa détérioration.

Date de version: 04/05/22 1/3

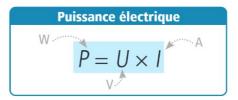
- L'énergie dissipée sous forme d'énergie thermique par effet Joule est due à la résistance r du dipôle électrique (générateur, moteur ou conducteur ohmique).
 L'effet Joule augmente avec la valeur de la résistance r.
- Pour un conducteur ohmique R, qui est une résistance pure, on a UAB = R I (loi d'Ohm) et l'énergie reçue est intégralement dissipée par effet Joule; donc l'énergie dissipée par effet Joule, W1, est égale à l'énergie électrique totale We et s'écrit donc :

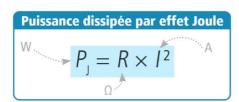
$$W_{\rm J} = W_{\rm e} = U_{AB} I \Delta t = R I^2 \Delta t = \frac{U_{AB}^2}{R} \Delta t.$$

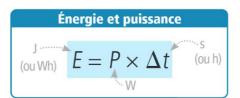
[Δt : la durée en seconde (s), $W_{\mathtt{J}}$: énergie dissipée en Joule (J).]

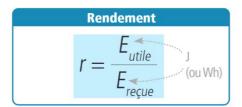
On définit la puissance Joule : $P_{J} = \frac{W_{J}}{\Delta t}$.

Pour un conducteur ohmique, elle est égale à la puissance électrique totale :


$$P_{\rm J} = P_{\rm e} = U_{AB} I = R I^2 = \frac{U_{AB}^2}{R}.$$


 De façon générale, pour tout dipôle électrique (récepteur ou générateur), de résistance interne r, l'énergie dissipée par effet Joule est : W_J = r I² Δt.


La puissance Joule est : $P_J = \frac{W_J}{\Delta t} = r I^2$.


Les formules à connaître et savoir utiliser

Effet Joule et variation de la résistance en fonction de la température

1. Energie thermique

Les récepteurs purement thermiques transforment toute l'énergie électrique en énergie thermique. C'est l'effet Joule et sa formule est :

$$W_{J} = R.I^{2}.t$$

Avec W₃: énergie en Wattheure (Wh)

R: résistance en ohm (Ω)

I : Intensité du courant en ampère (A)

t: temps en heure (h)

Transformation de la formule :

$$R = W_3 \div (I^2.t)$$

 $t = W_3 \div (R.I^2)$
 $I = \sqrt{W_3 \div (R.t)}$

2. Puissance dissipée par effet Joule

La puissance dissipée par effet Joule est :

- · Pour les récepteurs thermique : la puissance utile.
- Pour les récepteurs non thermiques : la puissance perdue.

$$P_3 = R.I^2$$

Avec P₁: puissance en Watt (W)

R: résistance en ohm (Ω)

I : Intensité du courant en ampère (A)

Transformation de la formule :

$$R = P_{3} \div I^{2}$$
$$I = \sqrt{P_{3} \div R}$$

3. Démonstration des deux formules

Nous savons qu'aux bornes d'une résistance $\mathbf{U} = \mathbf{R} \times \mathbf{I}$ et nous savons aussi que la puissance $\mathbf{P} = \mathbf{U} \times \mathbf{I}$ donc en remplaçant la tension \mathbf{U} dans la deuxième formule par son équivalent ($\mathbf{R}.\mathbf{I}$) nous obtenons :

$$P = (R.I) \times I = R.I^2$$

De même nous savons que $\mathbf{W} = \mathbf{P} \times \mathbf{t}$ et que $\mathbf{P} = \mathbf{R.I^2}$ donc en remplaçant la puissance \mathbf{P} dans la première formule par son équivalent $(\mathbf{R.I^2})$ nous obtenons :

 $W = R.I^2.t$

4. Formule de la variation de la résistance en fonction de la température

De la même manière que chaque matériau a une résistivité (p) qui caractérise sa capacité a laisser passer l'électricité, il a aussi un coefficient de température (a) qui caractérise la sensibilité de la résistance du matériau à la température.