

Série 2 : Exercices d'étude de fonctions

Exercice 1:

- 1. Représenter graphiquement les fonctions définies par : $f(x)=x^2$ et $g(x)=\frac{1}{x}$.
- 2. Déduire de leur courbe les courbes des fonctions définies par : $h(x)=x^2+2x+1$ et $k(x)=\frac{1}{x-1}$

Exercice 2

Soit f la fonction définie par $f(x)=3x^2+2x-5$. Soit (C) sa courbe dans le plan muni d'un repère orthonormé direct $(0,\vec{i},\vec{j})$.

- 1) a) Déterminer l'ensemble de définition de f.
 - b) Calculer les limites de f aux bornes de l'ensemble de définition.
- 2) a) Déterminer la fonction dérivée f' et étudier son signe.
 - b) Dresser le tableau de variation de f.
- a) Déterminer une équation de la tangente (T) à (C) en $x_0 = 0$.
 - b) Construire (T) et (C) dans le même repère.
 - c) Quels sont les nombres des points d'intersections de (C) avec l'axe des abscisses ?
- 4) Calculer le discriminant de f. En déduire les nombres des solutions de f(x) = 0.

Exercice 3

Soit f la fonction définie par $f(x)=-x^2+2x+3$. Soit (C) sa courbe dans le plan muni d'un repère orthonormé direct (O,\vec{i},\vec{j}) .

- 1) a) Déterminer l'ensemble de définition de f.
 - b) Calculer les limites de f aux bornes de l'ensemble de définition.
- 2) a) Déterminer la fonction dérivée f' et étudier son signe.
 - b) Dresser le tableau de variation de f.
- a) Déterminer une équation de la tangente (T) à (C) en $x_0 = 2$.
 - b) Construire (T) et (C) dans le même repère.
 - c) Résoudre graphiquement f(x) = 0
- 4) Calculer le discriminant de f. En déduire les solutions de f(x) = 0.

Exercice 4

Soit f la fonction définie par $f(x) = \frac{x-6}{x-1}$. Soit (C) sa courbe représentative dans le plan muni d'un repère orthonormé (O,\vec{i},\vec{j}) .

- 1) a) Déterminer l'ensemble de définition de f.
 - b) Calculer les limites de f aux bornes de l'ensemble de définition.
- 2) a) Déterminer la fonction dérivée f' de f et étudier son signe.
 - b) Dresser le tableau de variation de f.
- a) Déterminer une équation de la tangente (T) en $x_0 = 2$
 - b) Compléter le tableau suivant :

х	-1	0	2	3	4	6
f(x)						

c) Construire (T) et (C) dans le même repère.

Exercice 5

Soit f et g les fonctions définies dans [-1 ; 5] par $f(x) = \frac{1}{2x^2} + 1$ et $g(x) = \frac{x+10}{x+2}$. Soit (C) et (C') les courbes représentatives de f et de g dans le plan muni d'un repère orthonormé (O,\vec{i},\vec{j}) .

- 1. Étudier les variations de f et de g.
- 2. Représenter graphiquement (C) et (C').
- 3. Déterminer les équations des tangentes des deux courbes aux points d'abscisses 0, 1 et 2.
- 4. Résoudre graphiquement f(x) = g(x).
- 5. En déduire les solutions de $x^3 + 2x^2 16 = 0$.

Exercice 6

Soit f la fonction définie par $f(x) = \frac{2x-5}{3x-1}$ et (C) sa courbe.

- 1) a) Déterminer l'ensemble de définition de f.
 - b) Calculer les limites de f aux bornes de l'ensemble de définition.
- 2) a) Déterminer la fonction dérivée f' et étudier son signe.
 - b) Dresser le tableau de variation de f.
- a) Déterminer une équation de la tangente (T) en $x_0 = 2$.
 - b) Représenter graphiquement (T) et (C).
 - c) Résoudre graphiquement $\frac{2 x-5}{3 x-1} \le x+5$.