

STRUCTURE DE LA MATIERE

I/ Les corps purs

Un corps est dit pur si et seulement si il possède des constantes physiques:

- Température d'ébullition
- Masse volumique

Il existe 2 sortes de corps purs: les corps purs simples et les corps purs composés.

1- Corps pur simple:

Un corps pur simple est composé d'un seul type d'atome.

Exemple: dioxygène O₂, dihydrogène H₂, fer Fe, cuivre Cu,

2- Corps pur composé:

Un corps pur composé est constitué de deux ou plusieurs atomes différents.

Exemple: eau (H₂O), chlorure de sodium (NaCl), hydroxyde de Sodium NaOH,....

II/ Symbole chimique

Chaque élément chimique est représenté par un **symbole**, c'est la première lettre en majuscule du nom de l'atome; quelquefois la lettre majuscule est suivi d'une minuscule pour distinguer les éléments ayant le même initial.

Exemple: Carbone: C; Calcium: Ca; Cuivre: Cu.....

METAUX				
Elément	Symbole	Masse atomique	Valence	
Potassium	K	39	1	
Sodium(Natriu	Na	23	1	
m)	Ca	40	2	
Calcium	Ва	137	2	
Barium	Mg	24	2	
Magnesium	Mn	55	2	
Manganèse	Zn	65	2	
Zinc	Fe	56	2-3	
Fer	Ni	59	2-3	
Nickel	Cr	52	2-3	
Chrome	Sn	119	2-4	
Etain	Cu	64	1-2	
Cuivre	Pb	207	2	
Plomb	Al	27	3	
Aluminium	Hg	201	1-2	
Mercure	Ag	108	1	
Argent	Au	197	3	
Ör	Pt	195	2	

Platine				
METALLOIDES				
Elément	Symbole	Masse atomique	Valence	
Hydrogène	Н	1	1	
Chlore	CI	35,5	1	
Brome	Br	80	1	
Fluor	F	19	1	
lode	l	127	1	
Oxygène	0	16	2	
Soufre	S	32	2-4-6	
Azote	N	14	3-5	
Phosphore	Р	31	3-5	
Carbone	С	12	2-4	
Silicium	Si	28	4	
Bore	В	11	3	
Arsenic	As	75	3	

III/ Formule chimique

On représente une molécule par une **formule**. Dans une formule, chaque atome est représenté par un **symbole affecté d'indice**.

Exemple: dioxyde de carbone CO₂; eau H₂O

IV/ ATOME

C'est la plus petite partie d'un élément qu'on ne peut pas décomposer ou détruire.

V/ MOLECULE

Une molécule est formée par un ou plusieurs atomes. C'est la plus petite partie d'un corps qui peut exister à l'état libre dans la nature.

· Pour un corps simple, les atomes de la molécule sont tous identiques.

Exemple:

- corps simple monoatomique (Néon: Ne; Argon: Ar)
- Corps simple diatomique (Hydrogène: H₂; Oxygène: O₂)
- Corps simple triatomique (Ozone: O₃)
 - Pour les corps composés, les atomes de la molécule ne sont pas tous identiques.

Exemple:

- Eau: H₂O

- Soude: NaOH

- Acide sulfurique: H₂SO₄

VI/ Cation et Anion

Rappelons qu'un atome peut gagner ou perdre les électrons de la couche externe. Ainsi, il existe deux sortes d'ions: les ions positifs ou cations et les ions négatifs ou anions.

Exemple:

- Cations: Cu²⁺ , Fe²⁺, H⁺,

- **Anions**: Cl⁻ , S²⁻ , F⁻,

Date de version : 18/08/2021Auteur : Equipe Physique3/3